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This document constitutes the report on Grant AFOSR-81-0170

for the period from March 15, 1981 to March 14, 1982. The format

under which the report is organized is described as follows.

There were three major and separate research tasks carried out

during the past year under the sponsorship of Grant AFOSR-81-0170.

These separate research task areas were: optical sub-sampling

for multispectral image data compression; optical/digital hybrid

system architectures for interframe (temporal) image data compres-

sion; the usage of radiometric and spatial transformations for

adaptive image data compression. Since each of these research

task areas is independent of the others, we have chosen a report

format which emphasizes the independence and makes it possible

to concentrate upon reading about the activity in a particular

topic area with no involvement or conflict with topical material

from another area. Thus, the major research results are presented

in Appendices I, II, and III, three appendices that can be

separated from the rest of the report, if so desired. As such,

each appendix could be considered a "mini-report". Each ap-

pendix has its own introductory section which summarizes the

research objectives of the research reported in t6hat appendix.
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Optical Sub-Sampling for Multispectral

Image Data Compression

Research Objectives

Conventional methods in multi-spectral image data compression

require de-correlation transformations, e.g., the Karhunen-Loeve,

which are very costly in computing. The objective of this task is

to demonstrate that substantial data compression (e.g., 4:1) can

be achieved with little sacrifice in quality. The method is to

under sample each image array of a multispectral system, but with

the sample array of each spectral band staggered or offset so that

sample pixels missing in a given band are sampled in other bands.

The use of the combined spatial and spectral correlation within and

between bands is used to estimate missing pixels and reconstruct

imagery of higher quality than that obtained solely from under-

sampled data.

App'ndix Contents:

This appendix consists of a summary of the research in this

area as directly evaluated to date, plus a paper on general

problems in image sampling which is cf relevance to the sub-

sampling which is employed in this method.

L4
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This section of the report will review progress on the project

to achieve data compression of multispectral imagery by staggered

array sensor undersampling and subsequent reconstruction of the

original scene utilizing interband redundancy of edge information.

The technique assumes that features possessing high spatial fre-

quencies are similar in all spectral bands of a scene. This will

be true for shadow borders; however, spectrally dependent edges

such as the junction of materially different terrain regions may

be less spectrally correlated.

Prototype solid-state cameras have been constructed which use

similar staggered color (RGB) arrays [1], [2], (3]. The device

in [] comprises a set of adjoining linear CCO's, each array

being sensitive to only one spectral band. The arrays are de-

ployed in alternating color sensitivity, with elements of each

strip offset from the elements of neighboring strips. Dye-deposi-

tion color filter arrays (CFA's) have been bonded to sensor array

chips [21, [3]. The CFA's are rectilinear masks with repeating

pattern R G; the mask is thus staggered by spectral element but
GB

without sensor gaps as was the case in (1]. Configurations up to

484 x 384 elements with 34 im x 20 Wm element size have been

achieved [3). However, ittle attempt has been made to estimate

imagery in unsampled bands from data in a sampled band: in [2],

edge information in the high resolution G band was added directly

to the low resolution R and 3 bands.

The sampling scheme considered in the present research con-

sists of four bands of a multispectral sensor which are equally
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undersampled, although at full resolution, at staggered intervals

in a scene. The result is a single composite image, a mosaic of

the band samples, having identical spatial dimensions to the original

scene. The four spectral estimates of the scene are then to be re-

constructed in full detail from this single image. The spatial

arrangement of pixels in a four-band image, bands i - IV, is

I II I II

III IV III IV

I II I II

III IV III IV

A reconstruction window five samples square is passed across the

mosaic image; at each window location, the center sample, plus

estimates of the other three bands formed from the window content,

are written to the corresponding spatial coordinates in four

output images.

The contents of the window may be described by the array:

X H S H X

V D V D V

S H S H S

V D V D V

X H S H X

where

S is the band of the central sample,

H is the band of the horizontally nearest-neighbor sample,



V is the band of the vertically nearest-neighbor sample,

D is the band of the diagonally nearest-neighbor sample, and

X positions are ignored.

In each window position the value of S is given, and the

values of H, V, and D must be estimated from the contents of

the window. If E is the general band to be estimated, (i.e., H, V,

or D) then the values S and E may be decomposed into local means and

differences as:

S = + AS

E = T + LE. ()

Let us form the estimate E = E + ccAS, i.e., we wish to estimate

AE from AS. A MMSE criterion such that <(E - E)2> a minimum will

be assumed. The band images of E and S will be treated as weakly

stationary random variables over the extent of the estimation

window, so that the ensemble averages are replaced by spatial

averages. The coupling parameter a resulting from the MMSE

optimization is

= OES( E/OS), (2)

where a E and aS are the standard deviations of the E and S

bands, respectively, and PES is the correlation coefficient

between E and S, defined by

ES = <LEAS> , - PES . (3)
GE o S

Note that negative values of o account for contrast reversals

between bands, and that for s = 0 (uncorrelated E and S bands)

the band estimate is the local mean. If a is correctly chosen

according to (2), then the residual mean square error E2 depends
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on OES:

E ~2( 2
E G E PES (4)

+

When PES = - 1, perfect reconstruction is possible; when E and S

are uncorrelated (and when a = 0), then 2 equals the variance

of the estimated band. The typical situation will fall between

these extremes.

The estimation of the correlation coefficient PES at

each window location is non-trivial. If the E and S band values

of each window element were a priori known (in which case no

reconstruction would be needed), the expectation <AEAS> could be

formed from the average product of the E and S differences at

each element due to the assumption of local stationarity. In

the absence of such full information, an initial approximation

of PES may be obtained by averaging the product of interpolated

values at each window element. The accuracy of the OES approxima-

tion will then depend on the within-band spatial correlations of

both E and S.

Simulation

The above algorithm has been used in the reconstruction

of a demonstration image. The upper left photograph in figure 1

shows the original green band of a tricolor (RGB) 256x256 8-bit

digitized image. In place of four distinct bands, the mosaic will

be formed from a sampling array R G , with the R red band in
BR

both positions I and IV. The three associated c maps (G-RI,

G-R v, G-B) are included in figure 1 clockwise from the top. A
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closeup of the original is given in figure 2, and figure 3

displays the mosaic sensor image.

It is often true that some pairs of bands are more spectrally

correlated than others. This knowledge can be used in forming

the final band estimate. For example, in the demonstration image

bands G-B and bands R -Rv are such pairs. A post-reconstruction

filter can be devised that replaces an estimate by its within-

band nearest neighbors average if the local is below a

threshold and if the local S and E bands are not high-correlation

pairs. The sample array symmetry then guarantees that the nearest-

neighbor within-band estimates were formed from high-correlation

pairs and tend to be more reliable estimates. Thus the best

surrounding reconstruction estimates will supplant a poor estimate.

Figure 4 shows the result of reconstruction of the mosaic-

sampled image of figure 2, after the described post-filtering

with a 1"sE threshold of 0.5. Approximations of PSE were

generated from bilinear-interpolated versions of the mosaic. For

comparison, a direct bilinear-interpolation of the mosaic sampled

original displays considerable blurring (figure 5). Cubic

spline and sinc interpolation results are similarly degraded.

The root normalized mean square error (RNMSE) between the

original and estimate of each band is given in the following

table:

I
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Demonstration Image - RNMSE R-I G-II B-Ill R-IV

Reconstruction,

"true o" maps .02917 .06127 .06590 .02869

Post-filtered version of

above .02822 .05960 .06464 .02773

Reconstruction,

Interpolated p maps .02993 .06235 .06941 .02931

Post-filtered version

of above .02875 .06161 .06842 .02832

Bilinear interpolation .03247 .07286 .07605 .03206

The correlation-reconstructions are seen to be more accurate than

the bilinear interpolation. The replacement post-filtering,

with a IPSE !  threshold of 0.5, makes a small improvement in the

estimation of all bands.

Summary

Test results have indicated that interband correlation is

useable in a simple multispectral data compression scheme whose

only coding is the spatial configuration of the sensor array.

The 4:1 maximum compression ratio for the four-band case does

not take into account any further compression available by the

usual single-band methods, e.g., DPCM. Future research will

consider the effect of the sampling scheme on single-band methods.

The performance of various reconstruction-window configurations,

the treatment of nonstationarity within the window, and simula-

tions on a more varied selection of imagery will also be examined.
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Figure 1. Green Sand Original with Correlation Coefficient Miaps

i gu re 2. Deta-il of Or'Iaina , Single-Band
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Figure 5. bilinear Interpolatioo, Estimate of Sinale Sand
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Abstrazt

This paper is a one-dimensional analysis of the degradation caused by

image sampling and interpolative reconstruction. The analysis includes

the sample-scene phase as an explicit, random parameter and provides a

complete characteri:ation of this image degradation as the sum of two terms;

one term accounts for the mean effect of undersampling (aliasing) and non-ideal

reconstruction averaged over all sample-scene phases; the other term accounts

for variations about this mean. The results of this paper have application

to the design and performance analysis of image scanning, sampling and

reconstruction systems.

I4
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Introduction

1
In 1934 Mert: and Gray published their pioneering paper on the performance

of a particular line-scan imaging system, television. Over the next 20 years

2 3,4this work was extended considerably by Schade and others . More recently

a diversity of line-scan imaging systems have evolved from the application

of digital and electro-optical technology in such areas as space exploration,

remote sensing, reprographics, and medicine. These more recent scanning

systems typically employ electronic sampling and digital (or optical) image

reconstruction and their performance has been analyzed in numerous papers

and texts, for example references 5 through 12. Although various effects

have been considered in these performance analyses, one which is commonly

ignored is that associated with the phase uncertainty of the scene relative

to the sampling grid.

It is well known that for practical systems, image sampling and reconstruc-

tion inevitably produce some degradation in the reconstructed image 2; the

sampling contribution to this degradation is the Moire-like phenomenon known

as aliasing and the reconstruction contribution is a blurring caused by

high frequency supression. Aliasing has been investigated for line-scan

13 he effect of samle-
systems both experimenta'ly and theoreticail ly ,but th

scene phase was not addressed. Similarly this phase effect is typically

ignored in studies of various reconstruction filters, e.g., reference 13. The

amount and appearance of the image degradation associatel with sampling and

reconstraction will change as the sampling grid is shifted across the scene,

i.e., as the sample-scene phase is varied. How does the magnitude of this

degradation depend upcn the sample-scene phase? To date a complete analysis

of this question has not anpeared.
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In this paper the one-dimensional process of image scanning, sampling,

and interpolative reconstruction is analyzed in both the spatial and frequency

(Fourier) domain with the sample-scene phase appearing as an explicit,

random parameter. To produce mathematically tractable results in the spatial

domain it is necessary to restrict attention to simplified models of the

scene, scanner PSF, and reconstruction function. Nevertheless, considerable

insight into the general problem is gained with this spatial domain analysis.

The results obtained in the frequency domain are completely general

with no restriction on the scene frequency spectrum, scanner MTF, or recon-

struction filter. This approach characteri:es completely the relation of the

sample-scene phase to scanning, sampling, and reconstruction and provides

several measures of the resulting image degradation which can be easily

evaluated by numerical quadrature. It is demonstrated that although image

degradation due to sampling and reconstruction is present for all practical

systems, its average magnitude can be controlled by a proper choice of scanner

MTF, sampling rate, and reconstruction filter.

Although the results of this paper have general application, the primary

motivation for the research was to incorporate the effect of sample-scene

phase into an analysis of the image degradation due to sampling and recon-

struction of remotely-sensed multispectral (e.g., Landsat) images. For such

images there is known to be (see, for example, reference !6) a sample-scene

phase-dependent blurring and apparent location shift of high contrast

features due to sampling and reconstruction. Mhen classifying multispectral
image data, one is concerned with any blurring and shift in location of edges,

lines, points, etc., since such high contrast features are commonly used as
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control points in the resampling process of registering one image to another,

and even small shifts in control point locations can result in significant
17

misregistration and subsequent misclassifications

Formulation

Figure (la illustrates a one-dimensional scene, denoted f(x-u), which

contains a high contrast feature, in this case an edge, at the point u. A

typical scanner PSF, denoted h(x), is illustrated in Fig.(lb)and the image

g(x-u) = h~x)*f(x-u) (1)

formed by convolving the scene with the PSF is illustrated in Fig. (ic)..

The process of image sampling can be represented symbolically as the

product

g(x-u) comb(x) (2a)

where sampling is accomplished by the familiar comb i8 (or Shah 9 ) function

comb(x) = E 6Cx-n). (2b)

The svatial coordinate x is normalized in units of samrle interval so that

image samnpiing occurs at the integer locations as indicated in Fig. (ld). in

this coordinate system u is the sample-scene phase parameter; values of u

between zero and one indicate the position (or phase) of the scene relative

to the sampling grid.

12
:nage reconstrction is commonly modeled as

g (x; u) = [i(;1) cmb(%' *r'x) 3

194
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where the inte~rolation function r(x) is the impulse response of the (linear

shift invariant) reconstruction process. A typical interpolation function

and the resultant reconstructed image g (x;u) are illustrated in Figs. (le)

and (1f), respectively. Equation [3al can be written equivalently as

g_(x;u) = g9(n-u)r(x-n)
n-= (3b)

which demonstrates, consistent with the notation gr(x;u), that the reconstructed

image is not simply a function of the difference x-u. Equation C3b] also

illustrates (along with Fig. (1f)) that, for a fixed x, the extent to

which neighboring image samples, g(n-u), contribute to the reconstructed

image is determined by the spread of the interpolation function. For digital

image reconstruction (sometimes called resamrplingO), computational

considerations dictate that this spread should be small; typically r~x) is

identically :ero for [xf larger than 2 or 3.

Scanning produces an image (Fig.(Ic) )which is a blurred (i.e. smoothed)

copy of the original scene (Fig. (Ia)); similarly, subsequent sampling and

reconst-uction produces additional blurring in the reconstructed image

(Fig. (If)). Thus to study the blur (i.e., the square of the radiometric error)

present in a reconstructed image it is convenient to define two quantities

image blur -f(x-u)-g(x-u)J dx (4)

and

sampling and reconstructi.n blur = [R(u, j g(x-u)-grx;u)] dx.

(tae
Thlese two quan-.ities are associated with rbut not equal to) the shaded areas
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indicated in Fis. (2a) and (2b); r2 and .2 represent the energy ofI ' SR

the differences f(x-u)-g(x-u), and g(x-u)-g (x;u), respectively. How do
r

and cR depend -uon the sample-scene phase parameter u? For 2 the answer isand~~~~~h anwe *dpnisnth a~es

obvious, for :S2 it is not.
SR'

Image blur (Eq. (4]) is an inevitable but well understood effect caused

solely by scanning the scene with a non-ideal (i.e., non-impulsive) ?SF. Image

blur is independent of the sampling and reconstruction process and

changing u merel: causes the scene and its image (Figs. (la) and (lc)) to

shift together along the x-axis without changing the energy of their difference.

Thus image blur is independent of sample-scene phase. (This conclusion can be

verified mathematically by the substitution x' = x-u in Eq. [4].)

Sampling and reconstruction blur, denoted SR blur (Eq. (5]), is just as

inevitable as image blur; however, unlike image blur, the amount and appearance

of SR blur depends upon the sample-scene phase. Unfortunately, SR blur is

not nearly as well understood as image blur, even if the samvle-scene phase

effect is ignored. To think of SR blur as just aliasing is to is-nore the

effect of imperfect reconstruction; to think of SR blur as just interpolation

(or resampling) error is to ignore the effect of undersampling.

In this paper the dependence of _' upon sampling, reconstruction, and

samle-scene phase is analyzed. 7n addition, e R is statistically character-

ized in terms of its mean and variance by considering an ensemble of scenes

f,[x-u) with u as a random phase ?aramet.er uniformly distributed between :ero

and one. The imrortance of this stochastic approach is that frequently in a

real scene with many high contrast features, the sample-scene phase of each

is random and equally likely to be any number between zero and one. Ccnsequen-,
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in a reconstructed image of this scene the SR blur associated with each

high contrast feature must be analy:ed as a random variable.

Spatial Analysis: ExamDle

It is illuminating to analy:e a particular image scanning, sampling, and

reconstruction system in the spatial domain because the analysis is direct

(although algebraically cumbersome) and the results are easily verified by

digital simulation. Specifically, consider a scene f(x-u) which is an

edge (i.e., a step of Lmit height) at the location u

1 xz u
f(x-u) = step(x-u) 0 . (6)

Equation L6] provides an important scene model for remote sensing applications

since many images of interest are agricultural or urban and dominated by edges.

If the scanner PSF is an ideal aperture of unit response and width s, i.e.,

1 ~ ~ Ix1 SStxh(x) =_ i ect - " (7)s 
otherwise

then the resultant blurred image of the edge is a ramp of width s and unit

height, centered at u, i.e.,
3II X > U-

g(x-u) = h(x)-'f(x-u) -)-u !X4
S .

0 x < U - -

In the coordinate system of this paper, the parameter s represents the

instantaneous field of view rI.3)V) of the scanning aperture in units of samzple

interval. From Eqs. [4], [6], and [s] the image blur in this sreciai tase is
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TI 2 _J

and therefore increases linearly with IFOV.

In a discussion of image blur, s should be interpreted as the scanner

IFOV. However, in a discussion of SR blur it is more appropriate to interpret

s as the number of samples per IFOV. Thus, for example s = I corresponds :o

a sampling rate at which consecutive IFOV's are just contiguous while s = 2

corresponds to a 50% overlap in consecutive IFOV's. Most image scanning

systems operate with a sampling rate in the range I s s 2 2; for mathematical

simplicity s is restricted to this range in all the subsequent spatial

domain analysis.

Sampling the ramp image (Eq. (8]) generates image samples g(n-u) which are

all :ero for n S -1 and all one for n _ 2. -he dependence of the

two remaining image samples, g(-u) and g(l-u), upon the parameters s and u

can be determined from Eq. (8]. This dependence is illustrated in Fig. (3).

For u less than 1 - 0.Ss, g(-u) = 0.5 - u/s and g(u-i, - 1; for u between

I - 0.Ss and 0.5s, g(-u) x 0.5 - u/s and g(i-u) - 0.5 - l-u)/s; and for u

greater than 0.Ss, g(-u) a 0 and g(1-u) - 0. + (l-u)/s.

If image reccnstruc:ion is accomplished by linear interpolation, :he

associated inter- -claion functio:n .see Fig. Ce)) is

*(x) -ti Cx)
r x) otherwise

.,gure (4) illustrates the resul:ing reccns:ructed edge image as well as the

original edge and its image. -he shaded areas in 7-g. (4b) corr.espond to the
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SR blur that arises when I - 0.Ss < u < 0.5s. Figures (4a) and (4c)

correspond to the other two possibilities, 0 < u < I - 0.5s and 0.Ss u ' 1,

respectively. It can be shown that the dependence of SR blur upon s and u is

i4-- [ ( s-u ) 2 C(2u-s) 2"  (s':u)2C2"2u's)2] 0 1 u I- 0.Ss

E2Cu) 4 rF(s-2u)2(2u-s)2 + (s2u-2)!(4-2u-s) 1 - O.Ss < u < O.Ss( [cs-u 2 (,-2u+s)2  + (s 2u-s)2(4=Tu-s) 0.3s S u S 1

As Eq. (11] indicates, £ R is non-negative for all 1 is s < 2 and 0 . u s 1.

Figure CS) depicts curves of s2 versus u for various values of s.
SR

Notice that e2 is symmetric about u = 0.5 and that the shape of these curvesSR

depends dramatically upon s; for s = 1 the curve is bowl-shaped with maxima

at u - 0,1 and a minimum at u = 0.5, for s = 2 the curve is bell-shaped with

a maximum at u = 0.5 and minima at u = 0,1. Equation Ill] can be thought of

as a transformation, with parameter s, of the uniformly distributed random

variable u into a new random variable "R" The resulting probability density

function (pdf) of : has a very unusual shape, as illustrated in Frig. (6) for

the case s = 1. The pdf is U-shaped indicating that the extreme values of

SR blur are significantl,, more likely thar. the average value: The shape of

the pdf for other values oi s is similar.

Since u is uniformlv distributed, the averages value of SR blur is

EL![p s CSRJu (12)
.,

and the variance is

ar " -r du
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The variance is a measure of 
the extent to which E2 depends upon u and the

effect of sample-scene phase dependence is negligible if and only if /Var .

is much less than E 2 For example, from Fig. (5), this effect is negligible

if s - 1.5 but not if s = 1.

The dependence of E~ceR] and Var[csR1 upon s can be determined algebraically

from Eqs. (11], (121 and [13]. Specifically, it can be shown that

E ~ ~ l s S2 (14)

a surprisingly simple result which has been verified by digital simulation.

Equation (14] illustrates that for an ensemble of edges, each blurred by

scanning with an ideal aperture, sampled, and reconstructed with linear

interpolation, some SR blur is inevitable; this blur can be reduced by

increasing the sampling rate, but it cannot be eliminated.

Unlike Eq. [14), the algebraic expression for R is too cumbersome

to have practical value (it is an eighth degree polynomial in s divided by s ).

Instead, we present a plot of SR blur variance versus sampling rate, Fig. ('.

This variance changes by three orders of magnitude cver the range 1 S s S

and a pronounced minimum occurs at a sampling rate of 1.5 samples per 7FOV.

It should be emphasi:ed that the previous analysis is valid only fcr

1 s 2. Intuitively, the average SR blur will continue to decrease in

the region s > 2 but not necessarily at the rate indicated in Ea. [14;. For

small sampling rates, s < 1, it can be shown that

Ei ..] I'i 6i so. .
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Fourier Analysis

In order to include the sample-scene phase effect into the performance

analysis of a general image scanning, sampling, and reconstruction system it

is necessary to formulate the problem in the frequency domain. In :he usual
18,19

manner , we denote two functions F(x) and F(N)) as Fourier transform,

pairs

F~) F'v) (16a)

provided

Fcv) F(x)e'= dx (16b)
J

and

2 rxvji(x) aI F(v)e dv .(16c)

Since x is normali:ed in units of sample interval, the frequency coordinate '

has units of cycles per sample interval. :n this coordinate system the Nyquist

(Cr folding) frequency is 0.5.

From Eqs. '1], [2], and (3] it follows that

f~-) "e-Tui fCv) (17a)

g(x-u)) h-- (, h ' f('j} l b

and
rC~x~u-- r') e h-,u~-~ .(v -n)f C -n) (I17€)

where i( is the (:ero phase) scene frequency spectrum, h(.j) is the scanner
0TF, r 'j is the reconstruction filter Ci.e., the Fourier transform of the

in:er-olation function), and as before u is the ('random) sa m:e-sc.ne phase
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parameter. Equaticns [la] and [(,mi are immediate consequences of the shift

and convolution theorems. To derive Eq. [17c], the convr -ion theorem applied

to Eq. [3a] yields

~r x;u) -~ {[2v )i(v)1-combv} ^r~ (18)

isi

a result which uses Eq. [17b] and the tact that the comb function has the

curious property of being its own Fourier transform18 . Convolution with

the comb function in Eq. (IS produces the image spectrum replication in

Eq. [17c]; this replication is the inevitable result of sampling.

In the previous spatial domain analysis the scanner PSF (Eq. (7]) and

interpolation function (Eq. [10]) were normalized to unit area. That

normalization is used throughout this paper; in the frequency domain

it means that at :ero frequency
cv

h(O) ( h(x)dx = I (19a)

and

i(0) = r(x)dx = 1. (19b)

Parseval's theorem applied to Eqs. (4], [17a], and [17b] yields the

image blur, i.e.,

- I I M- 
.' ! ~-hn(; 2? -f(v) ! 2 dv 2

which illustrates (again) that image blur is independent of sample-scene

phase. If the scanner PSF is an impulse, then h(,) - 1 for all -, and image

blur is zero for all scenes. For all practical PSF's the condition h(,,)
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can not hold for all ,j; at high frequencies h() approaches zero. As Eq. [201

indicates, the cause oz image blur is the presence of significant scene

energy, f() 2  at frequencies where h(v) : 1.

An expression for SR blur analogous to Eq. [20] can be obtained from

Eqs. [5], [17b] and [l7c]; however a somewhat different approach is preferable.

This approach is based upon the observation that cR is periodic in u with

period one, and thus

-SRI (21a)M
= 

-

where the Fourier coefficients are given by

am = I 2 -2ruZi du. (21b)m ZSR e
J .

The coefficient a, has parcicular significance; it is the average SR blur,

i.e., from Eq. [12)

E R = a,. (22)

in addition, it follows from Eqs. [i3 and [21a] that SR blur variance

is

Var[R ;~a (3
m=l

In general for m # 0 the Fourier coefficients are complex. However because

e2  is raal, they satisfy a a* for m = 1,2,3... where (.)* denctes
SR -M M

complax conjugate.

The explicit de:endence of the Fourier coefficients (and thus E['-. I and

Var 2j upon the scene spe:trum, scanner OTF, and reconstruction filter can
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be determined by first recogni:ing that, from Eqs. [17b] and [17c]

g(x-u) - gr (x;u) -- e 1 n (vn ) nCne (

where in the summation n = 1 if n - 0 and n = 0 otherwise. A combination
n n

of Parseval's equation, Eqs. [5], [2!b] and [24] yields an imposing looking

expression for a
a m

4_ n=-= n=-=

S[fo e-2-,Um-n+fii du]d

Fortunately, because of the integration with respect to u, the only non-:ero

terms in the double summation are those for which n-n = m. WVith some

mathematical manipulation, which is omitted for brevity, Eq. [25] can be

reduced to its simplest form

am r(vr* m) r(v-n) h*()(-m)f*,j)(-)dv

"D 1(26)

In summary, for a general image scanning, sampling and reccnstruction

system the image blur is given by Eq. [201 and the SR blur is gi.°en by a

Fourier series (Eq. [2la]) in the random phase parameter u with coefficients

given by Eq. [261. The mean and variance of SR blur are given by Eqs. £.2]

and [231. All of these quantities can be calculated by numerical quadrature

provided values of the scene frequency spectrum f(v), the scanner T: h(v),

and the interpolation filter rCv) are available.

As an example of this Fourier analysis, if the scene is an edge (Eq. :6:),

the scanner PSF is an ideal aperture (Eq. [7]), and the interpolation Zunzti'.
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is linear (Eq. [101), then

I1f() - () + i2() (27a)

hv) = sinc(sv) (27b)

and

r(v) = sinc2 (v). (27c)

It can be shown that the associated image blur is

, .2 ,/ ' [ - s i n c ( s v ) ] 2
-1 2  dv 

(28)
j 4-r 2 ,. 2

and the SR blur is

F-2R(u) =E~~4 2 am cos(2-Itmu) 12 9a)

where

E[SRIi sinc--(i-) sinc(sv) dv (29b)
_ ) = -== 4-r2vj2

and where the Fourier coefficients are real and given by

-[
a L- sinc( ,v, - sinc2 (v- m) + sinc '(-n)

j I-n = 
.wi

s in c(s,)) s in c[(s (-,)-m)
x s'in'n m = ., .. (29c)4r:v (,i-rn)

Because of the singularity in the edge spectrun (2q. [27a]) at V = 0, some caution

must be exercised in the numerical integration of Eqs. [:3), f29b], and r29c].

However, the singularities in the integrands are removable and present no

fundmamental difficulties.
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SR Blur

Considerable insight into SR blur can be obtained without resorting to

numerical simulation. In particular, from Eqs. [22] and [26] the average

SR blur is given by

E [e2J p e-' )h vd(' )d (30)

where e2 ()) is the non-negative function defined by

e ) 2  (31a)
el,)= 1 - r2  , . 12r(J-)

r(v) 2 + r(v -n) 12  (31b)
S n#O0

and M[.] denotes the real part of a complex variable. Since CR is a non-

negative random variable, it is identically zero if and only if its mean is
zero. From Eq. [30), ESR]= 0 if and only if the integrand is identically

zero for all ,. In other words, for a general image scanning, sam.ling and

reconstruction system some SR blur is inevitable unless

e(,.))!~~ 0 (2

for all ").

For a well designed scanning system it is comrmon to use eiec!ronic

filtering prior to sampling and thereby shape the scanner MTF, jih(.)i, so that

the image spectrum is band-limited, i.e.,

Ih(,v) fc,;'j = o (33)

for all !'j > ' c . For such a system, Eq. '321 will be satisfied at high

freouencies. However, below the cut-off frequency, C"' E. :321 can be sat's:ed

oniy by choosing the reconstruction filter r(v) so that e2 (,j) is zero.
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What choice of reconstruction filter will satisfy the equation

e.2 r 0 , <9 (34)
C

for all jvJ S ' c ? Because of the first term in Eq. [315], r\)) must be one for

low frequencies; because of the remaining (side-band) terms r(') must be zero

for high frequencies. In fact, in terms of v , the solution of Eq. 341] is

completely characteri:ed as follows. If v > 0.5, Eq. [34] has no solution,

and if v c 0.3, the only solution to Eq. [34] is

1 c

r(v) = arbitrary 'Pc < ! 0.5 (35)[c
tv > L.5

21

This discussion establishes what amounts to a sampling theorem for a

general image scanning, sampling, and reconstruction system. Namely, there

i-S no SR blur (Eq. [3]) if and only if all the followin are true:

(i) the image spectrum is band-limited;

(ii) the cut-off frequency . is 0.5 c'.'cles per sample interval or less;

(iii) the reconstruction filter satisfies Eq. [35].

Condition (ii) represents the Nyquist criteri3 for sufficient sapling, i.. it

determines an upper bound for the sample interval si:e. Conditions (i) and

(iii) are idealizations; a truly band-l:rnited image spectru:m IS convenient

assume but difficult to achieve and all finite .idth reconstruction tilters

are "non-ideal," i.e., they do not satisfy Eq. [33]. Thus, for all practical

systems some SR blur is inevitable.

There are three effects which c.ntribute to SR blur: inperrect ro:o-

struztion, aliasing, and samole-scene phase dependence. T- .. the ccnzriu:

of each, we can combine Eqs. [:!a', and 22 to yield
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Frm Es [30 (u) [2Rb] E , u
~SR(U ZLR 3 (361,

moo

From Eqs. 1301 and blb, can be written Is the sum of two terms, i.e.,

EF2 - . + .2(37a)IsRA I

where

.

R

an d

= S ~ ~ ~ 2 h C,))f(v J' d, . (37c)

The term s accounts for imperfect reconstruction; it is analogous to image

blur, Eg. [201, and it measures the contribution to SR blur caused by the

presence of significant image energy, !h()f(v) 2 , at frequencies where r(j) 1.

The term r2 accounts for aliasing due to undersampling; it measures the

contribution to SR blur caused by the presence of significant image energy

at frequencies where the energy in the reconstruction filter side-bands,

Vr(_n) 2, is not zero. An equivalent, but more familiar expression14

n#O
for 2 follows from the identity

;- =(r([)-n)12 hN)f(A) 2 d v n
L In= L ' n 0

Equation (37d] demonstrates the duality between side-band energy in the recon-

struction filter and image spectrum. Both e: and r2 are independent of u
R _

and correctly account for the sample-scene phase-averaged effects of impertect

reconstruction and aliasing.

From Eqs. r361 and [37a], s2 can be written

. SR

S2 2 + ~u 3a
SR (u) S R
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where

,(u) m . a j?[ e (38!7
m mm m J (38!

The term is the sample-scene phase dependent contribution to SR blur;

it is a real valued random variable with zero mean and variance 2 a
mm=l

Phase dependence is zero if and only if a = 0 for all m = 1,2......For
m

a particular system this phase dependence is best investigated by numerical

simulation using Eqs. [26] and [38b]. However, one condition sufficient to

guarantee that = 0 can be obtained by inspection; the integrand in Eq. (26]

will be zero for all v if the image spectrum is band-limited with the cut-off

frequency less than 0.5. That is, sufficient sampling of a ftr1ly) band-

limited image will eliminate the sample-scene phase dependence in SR blur.

Of course, some SR blur will still be present unless the reconstruction filter

satisfies Eq. [35].

An inspection of Eq. [27] reveals why the example considered previously

in the spatial domain analysis exhibited a non-:ero, phase denendent,

SR blur for all sampling rates, s; the image spectr'.rn is not band-limited

and the reconstructio,, filter is imperfect. For this example bozh

2 s-sinc2 (.2]2  [sincs- 1 ]2

* and

= r s ~ r~s\Y12 39b)
02[n sinc4 (,-rL

S " [ni

are positive for all S. n additicn, It can )e verified numericaily fusing

Eqs. [23] and [29c]) that VarL R > 0 and thus the phase dependence, :(u),

becomes small, but does not disappear as s becomes large. See also Fig. (';

which i ustraes the rninitude o- :.is zhase 'eence =' I < -.
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Reconstruct ion Filters

To sLuLTmari:e some of the previous discussion, Eq. [31b] defines e-(,)

in terms of the reconstruction filter r(v). As Eq. (30] reveals, the cause

of SR blur is the presence of significant image energy at frequencies where

e2 (v) is not :ero. Just as the scanner OTF can be interpreted as a ore-

sampling filter acting upon the scene Wiener spectrum, f(')[ 2 , to produce

image blur (Eq. (20]), the reconstruction filter can be interpreted as a

post-sampling filter acting upon the ,e Wiener spectrum, h(,)f(v'! 2 , to

produce average SR blur (Eq. (30]). In other words, l-h(,jl is to image

blur as e2 (v) is to average SR blur. It should be emphasized that e2 (v)

is no: just l-r(v)! 2 ; sampling causes the appearance of the side band terms

_r(,-n) 12 in Eq. [31b]. If r(x) is the ideal interpolation function sinc(x),
n00
then rr,') - rectC()) and e 2 (,,)) - 2 - rectzv). What does e2 (,j) look like for

some common Cnon-ideal) reconst.-uction filters?

Table I lists the characteristics of three common digital interpolation

functions, nearest neighbor, linear, and cubic and the ideal interpolation

function, sinc. There are actually several variants of the cubic interpolator

in the literature, each derived as a finite-width approximation to sincx);

the form we have chosen is due to Berns-ein . rigure r3) is a 7iot C' e2 (-

versus v for the four interpolaticn functions. A comparison of the relative

magnitude of the four curves in the region 0 e. 0.5 yields the conclusion

that for any band-limited and sufficiently samDled image: Ci) the ideal

interpolator causes no SR blur; (ii of che three ccmmon digital interpclation

functions, cubic causes the least SR blur and; (iii) nearest neighbor inter-

polation causes the most SR blur. (Unfort,:nately, it is necessary

to qualify zonclusion ('- because of te small hixnD on the cubic :urve at low
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frequency. It would be mathematically possibi: to construct a band-limited

and sufficiently sampled image, with virtually all its energy at ', 0.05,

for which linear interpolation causes slightly less SR blur than cubic.)

Since the e2(v) curves cross above the Nyquist frequency (0.5), if the image

is not band-limited and sufficiently sampled, conclusions rij, Cii), and (iii ,

are not necessarily valid. In fact, in this case conclusion (i) is invalid

and the ideal interpolator may cause more averac;e SR blur than some of the

others!

The example we have considered throughout this paper--edge reconstruction--

has an image spectrum which is not band-limited. For this exazmple the average

SR blur is

E !R04 e2(,) sincz(s,) d\ (40)

'here ez(,') is given by Eq. [3l] and the terms rrW. and r(,-n)!2 are listed

in Table I for each interpolation function. Equation [40] has been evaluated

numerically for various values of the sampling rate, s, and the results are

illustrated in Fig. (9). Of the three common digital interpolators, nearest

neighbor is clearly the worst choice (as expected' and cubic is the best

choice exceDt at low sampling rates, s 0.6. in this example, when s is

less than 0.3, the image spectrum has so much energy abcve the Nyquist frequency

that the ideal interpolator actually causes more average SR blur than either

linear or cubic. In fact, cubic causes less aver:age SR blur than sinc for

values of s as large as I.I.

Table I lists, fnr each interpolator, a closed fo~r- e.xression for the

infinite series r(%-n) 2. This expression car be used to simlifv

considerably the numerical vauaticn of e2(') ;ad is based upcr the identi'.
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r(u-n) '2 'rwr)(3) 2 (r*r)(n) cos(2> nv) (41)
nz -  n--1

Equation [41] is valid for any interpolation function provided it is even,

i.e., rCx) = r(-x) for all x. For all practical interpolation functions,

(rwr)(n) will be :ero except at small n and the infinite series in Eq. [41]

can be evaluated in closed form. The validity of Eq. [411 follows from the

observations that if r(x) is even, r(') will be real, r(x)*r(x) will be even,

and

i[r(v-n)1 2 = r2(v) comb[v) = (r*r)(n)e -2Wf u i (42)
-n=-

The last equality in Eq. [42] can be verified by taking the Fourier transform

of each side. in Eqs. [41] and 142], (r-r)(n) represents r(x)*r(x) evaluated

at x = n.

The assumption that the interpolation function r(x) is even is not restrictive;

it is difficult to imagine any situation in which rrx) would be constructed

otherwise. It can be shown that if r(x) is even, then r(;), 2lr(v-n)i
2,

n

and e2 (v) will all be even functions of ,v.

Discussion

The emphasis throughout this paper has been on an analysis of the degradation,

2R(u', caused by image sampling and reconstruction. The analysis is unique in

that it includes the sample-scene phase as an explicit, random parameter.

Results established in the frequency dcmain provide a complete character-i:ati.n

of :s (u) as the sum of two terms, E R] and (u). The first term accounts

for the mean effect of sampling and reconstruction averaged over all
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sample-scene phase-% the second term accounts for variations about this mean.

If the image is band-limited and sufficiently sampled, the variations about the

mean are suppressed, i.e., c(u) = 0. If, in addition, the reconstruction

filter is ideal, the mean is zero and SR blur disappears.

Table II is a logic flow diagram which summarizes the results of the

frequency domain analysis. To avoid unnecessary clutter in this diagram, cnly

a band-limited image is considered and the notation

g(v) = h(%))f~v (43a)

I r(.j-n)[ 2 
- r(v) - r*(v m) (43b)

is introduced to simplify some equations. Since all spatial and frequency

variables in this paper are referenced to a coordinate system in which the

sample interval has unit length, all frequencies (v) in Table II have units of

cycles per sample interval and the Nyquist frequency is O.S.

To better understand the results of this paper, it is important to

appreciate the inverse relation between the parameters ) c and s. For a general

scanner PSF (not just an ideal aperture, Eq. [7]), s represents the width of

the IOV relative to the sample interval or, equivalently, the number of

samples per iFOV. Just as s is proportional to the effective width of the

scanner PSF, the cut-off frequency, vc' is proportional to the effective

width of the scanner CTF. Because of the scaling property of Fourier transform

pairs, it follows that

S Vc - constant. (44)
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Thus, for example, reducing the cut-off frequency by 50% is equivalent to doubling

the sampling rate.

From Eq. (30] it can be seen that, for a fixed sample interval size, there

are two ways to reduce SR blur. One way is to shape the reconstruction filter

so that e2 Cv) is small at those frequencies where ,hCv)f v) 2 is large. As

Fig. (3) indicates, this technique of post-sample filtering can be quite effective,

but only if the IFOV width, s, is large enough so that vc < 0.5. Reducing SR

blur by shaping the reconstructicn filter does not effect image blur. The other

way to reduce SR blur is to shape the scanner NrTF so that ih(v)12 is small at

those frequencies where e2 C.)lf6 )! is large. This technique of pre-sample

filtering definitely does effect image blur. In fact, there is a trade-off:

reducing SR blur by shaping the scanner MTF inevitably increases image blur.

Figure (9) illustrates the trade-off between image blur and SR blur in the

special case of an edge scanned with an ideal aperture. For a fixed sample

interval size, as s increases the IFOV is broadened, the effective cut-off

frequency is reduced, and high frequencies are suppressed. The result is an

increase in image blur and a decrease in SR blur.

Finally, it is important to note that the total blur (i.e., the square of

the total radiormetric error) associated with the entire process of scanning,

sampling and reconstruction is

S2 = [f4x-u) - gr(X;U)] 2 dx . (45)

This siple-scene phase dependent blur is not Just the sum of - and c2R(U).

However, from the triangle inequality, it fallows that

LI -SR-u

EEz2] s el + E[R " (46b)
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Therefore, the results of this paper can be used directly to establish an upper

bound on :-2 and E~c.
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Table II. The calculation of SR blur. The image spectrum, g(v), is
assumed to be zero for all !v! > vc .

I NPUT
SCENE SPECTRUM f(v)
SCANNER OTF ;(v)
CUT-OFF FREQUENCY v (CYC/SAMPLE INTERVAL)
RECONSTRUCTION FILTER r(v)

CALCULATE BAND LIMITED IMAGE hiv! vc
SPECTRUM g(v) 0 otherwise

e2(v) = L
n

v(v;m) = jj (,-n)12- "(,))-;'*(,j-m)

is SRU = JtR+~u

-vc

(SUFFICIENT 2' umi

SAMPLING) ((u) = 2 ' e2'umi?M-1

a = (v;m) (v)

m -- C,,9

C r,2 1,
DO SSR "LSR!

.r SATISFY c
q.,[351 (IDEAL "- SR!

(i(u) ,0)

E2 "
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Optical/Digital Hybrid System Architectures

for interframe (Temporal) Image Data Compression

Research Objectives

Interframe data compression with optical computations has

been demonstrated under previous support of AFOSR. Interframe

data compression has proven more elusive, principally because of

the complex logic operations required in interframe comparisons.

The objective of this research is to demonstrate that architectures

for interframe compression can be conceived which combine computa-

tions appropriate with digital processors.

AQpendix Conterts

The contents of this appendix consists of a review of the

general problem of interframe compression plus a proposed

architecture for an optical/digital system for same, plus a paper

demonstrating the results achieved in simulations of one such

method.
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I. INTRODUCTION

A hybrid optical/digital system architecture has been shown in previous

research to be a feasible and viable approach to interframe coder design

[1,2]. One of the definite advantages of optical computation over digital

computation is the speed and ease of frame differencing in terms of the

inherent image-plane--to-image-plane parallel processing. The temporally

adaptive hybrid optical/digital system proposed in Ref. [2] was designed to

use the above advantage, as well as the temporal redundancy between

successive image sequences. However, it is not quite spatially adaptive due

to the fact that only the interpolated differential pulse code modulation

(IDPCM) spatial compression system has been used where large movement

greater than the predetermined threshold is involved between image

sequences. Therefore, the above scheme can be greatly improved by

considering the following factors:

(1) An adaptiively-coordinated spatial/temporal subsampling and

interpolation between the spatial and temporal compression

subsystems are feasible by using programmable resolution

provided by focal plane detector technology.

(Z) Motion-detection/estimation schemes could be integrated into

a hybrid optical/digital architecture.

(3) More reliable movement activity measures (image derivative

energy) [31 could replace the normalized mean square error

(NISE) of the frame difference, which could be used for the

decision mechanism of an adaptive compression system.
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(4) A highly parallel digital processing scheme using multiple

microprocessors could be integrated into the hybrid

optical/digital architecture in order to offset the slow

processing speed of sequential digital subsystems as opposed

to the high-speed optical subsystem. Also, the problem of

efficient interfacing between the optical and digital

subsystems should not be overlooked.

This paper addresses the above suggestions for the improvement of the

hybrid optical/digital approach for interframe image data compression by

introducing the adaptive decision mechanism based on image derivative energy.

In Chapter II, the state of the art of the adaptive digital interframe

predictive coding is reviewed. in Chapter III, we propose the use of image

activity measurement for adaptive multimode coding, which is designed to

integrate high-speed optical processing for the computation of spatial and

temporal gradients and energies, and flexible digital processing for

controlling multimode coding. In addition to The system configuration a;-d

algorithmic explanation, the current technological trends are briefly

described to justify parallel processing and hybrid optical/digital

processing.

Finally, the striking similarity between the parallel image processor in

the proposed adaptive multimode coder and the parallel processor ?ASM

(partitionable SIMD/MIMD systemn) has been pointed out. Thus, it is inferred

that the parallcl hybrid optical/digital processing approach provides a Much

broader conceptual framework fcr computer vision systems. Dtailed

arcriteztural consider; tin will be left for further research.
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II. ADAPTIVE DIGITAL INTERFRAA',E PREDICTIVE 'CODING: A REVIEW

There have been numerous excellent surveys concerning- digital picture

coding [4--91. Rather than repeating the above surveys, we selectively.

consider the recent development related to adaptive interframe predictive

codingy.

There are various adaptive strategies that have been developed for

spatial compression alg-orithms, such as differential pulse code modulation

(DPCM), etc. The typical examples are adaptive prediction and quantization

approaches. The former is based on the nonstacionary statistical Irnoge

model and assumption, which are more reliable in characterizing t1-e edges or

outline of the real world images than the first order 11arkov image model.

Thus, the predliction error at the edge between the adaptive predictor and

the original pixel is made smaller than the nonadaptive prediction error.

-he latter takes advantage of the isenitivity of the 'human eve to the

quantization error. That is, the quantization steps and levels are

adaptively selected in, such a way that the introduced quantization

distortion is not pe rceptable to the human visual system.

Interframe co,--pressirin algor*.ihms also take advantage of the temporal

charac teris tics of tcae human visual system, in addition to the above spatial

characteristics of humar~ visual perception and the statisticalrdua;v

represen~ted I.Y a:1 i a OUrce model. A rezent study [9i on the spatic-

temporal response2 of LIRL human visual. syse reve~lled thrat, at hi-h

toe-porii frecv,;cncies, spatlil ct a sensitivity is reduced. Thii indicates

chat the sensiti"vityL of the human visual system is low to fine splatiai
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detail in rapidly-moving objects, and at high spatial frequencies there is an

overall decrease in flicker sensitivity. For the nontracking task, which is

typical in teleconference or picture phone environments, the human visual

system can tolerate a loss of spatial resolution in the moving area

(reported by Miyahara [101). These observations strongly suggest that the

interframe coder can classify the parts of the spatial source image

sequences and adaptively apply different efficient coding schemes to them,

in accordance with the different spatial and temporal resolutions required

by the human viewer for the appropriate visual perception. The simplest

coding schemes are the frame replenishment method using frame repeating-

dropping, spatial and temporal subsampling and interpolation.

The more sophisticated methods consist of extracting the actual motion

displacement between frames. This motion estimation approach is still in

its infancy and most of the past work has been restricted to two-

dimEnsional motion, especially translation L9,111. There have been four

major approaches to estimating two-dimensional translation: (1) the Fourier

method, (2) the method of differencing, (3) the temporal-spatial gradient

technique, and (4) matching. In the context of TV signal transmission, the

latter three have been selected for real-time implementation. The basis of

moveent-compensated predictive coding is that, if the displacement field of

the moving-image sequence is known, then a very good prediction of the

curren,. field in the moving image sequence can ba obtained by shifting and

interpolatinc the parts of the previous field (or frame) which %a'e moved

[9]. This general. approach is also simplified into two methods For real-time

impiementation. One method is tho Pel-block displaccment
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estimation/compensation technique [12-18] and the other is the Pel-recursive

displacement estimation/compensation technique [19,20,251.

In the former, the scene is divided into rectangular blocks, and a

single shift is estimated for each block. The block may or may not be

segmented into changed and stationary areas. The previous frame (or field)

is shifted, and interpolated if nonintegral displacement estimates are

allowed, to form the prediction for that block [9].

The latter technique updates the displacement estimate (which may or

may not be obtained by Pel-block motion estimation) at each pixel. This

update is based only on previously transmitted pels, so that no explicit

displacement estimate need be transmitted.

There are two methods for estimating translational displaccnents: (1)

the correlation or matching technique j12,13,181, and (2) the temporal-spatial

gradient technique [10,14,17,21,22,231. Given an object in translational

motion with velocity V=(V 1 ,V2 ), the image luminance satisfies

U(',t ) U[X-V(t-t0 J,t 0 ] (17.1)

for an arbitrary reference time to. In particular, if z is the time interval

between frames

_ t+7- , (I.2)

whc:e d=TV is the displacement whici occurs in one frame interval.
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I1.1. The Correlation/Matching Technique

The basic idea of this method is to choose d from a set of possible

displacements 2 to minimize some measure of the difference between the

current frame and the previous frame displaced by d. Thus, d is the value

which solves

J-U, -d t , ](11.3)

N[U Xx,to+ )-U' X-d,t )J

d E? XMA

where T-MA denotes the moving area and N(') is a nonnegative increasing

function wlich serves as a distance measure.

Equation (!i.3) indicates that a large computation is required, since it

should be evaluated for each dcr . Thus, there is a trade-off between

accuracy and computational load. In practice, only a relatively small

number of integral displacamen.s have been used.

11.2. The Temporal-Spatial Gradient Technique [14,21,22,23]

The standard procedure to minimize the difference between L(X,t) and

U(Xt)=U[X-V(t-to0 ,t 0] is to take the derivative of the squared error

a=[U (X ,t)-U (X ,t)]2a n d eq u a te it to z e ro . Sin c e th e r e e xis t s a re la tio n

between the t emporal derivative and the spatial gradient of the moving

object as s'iown in Ref. [24j:

U(X,t) -.

I;, 
~ :t,( 

1 4
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aplroxlrmating the derivatives by finite differences, we have

Thus, the velocity estimate is obtained by choosing V, which gives the best

mean-sqliare fit to (11.5) over the moving area, i.e., which ninimizes

C = ) [AT(X,t) + V 'x_,t)12. (11.6)

By setting VC=0, we obtain

V = LXMA ] XcMA T(,t) X§Xt) (11.7)

Limb and Murphy [10,17J have described a simplified version of tho above

estimator as follows:

ATX,t) sign[AXIl (X,t)j I "x(Xt)
XEMA XCMA

L ATX,t sign[Ax2(X.t)]/ I x2(X~t) (ii.8)

wh MA / -If

whe-e
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A survey of these two methods is given in Ref. [111. The gradient

methods in general require fewer computations than the matching/correlation

technique for a given level of accuracy. This is particularly critical for

real-time application in image sequence (interframe) codi:; . However, the

gradient method is inaccurate for large displacements (above several pixels

per frame) where there is a significant amount of detail due to the fact

that the temporal derivative in Eq. (11.4) is approiimatd bv the frame

difference. This problem can be alleviated by introducing a temporal

recursion. In other words, the corresponding estimate .or the previous

frame is updated using the same algorithm with the Pel- .ock displacement

estimation technique, but the frame difference is replaced by the displaced

frame difference. The resulting estimator, called the directional gradieat

method or the Pel-recursive displacement estimation technique, is accurate

and robust to noise for large area translation, but it cannot respond tc

rapid spatial changes in the displacement field.

Netravali end Robbins [191 have proposed a coder in which the

displacement estimate is recursively updated at a spatially-neighboring

point as follows: Given the displaced frame difference, with displcement d,

D(X,t,d) = U(X,t) - U(X-d,t-r), (U1.9)

and if the object has translated by an amount d in one frame, then

D(X,t,d)=O. The basis of the pel-recursive estimator is to adjust d at each

pel in order to reduce ID(X,t,d)!. This is done by chau,.ging d in the

d:cection of the negative gradient, thZ is,
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= di'- _ - 7d[D(X,t,di-] 2  (!.I0)2

where d i is the displacement estimate at pel i of some scanning sequence.

Inserting Eq. (11.9) into Eq. (II.10) yields

d~ i d' - DLXt,di l)XUV.d ' t-'). (11.11

Since U(X,t) is defined only at the sampling point, interpolation must be

used to evaluate D(X,t,d) and VxU(X-d,t-t). They found it adequate to use

linear interpolation to evaluate U(X-d,t-t), and 7xU'X-[d,t-=J to estimate

the gradient, where [d] is d rounded to the nearest grid point. This

algorithm, where £-1/1024, further reduced the bit rate by I to 1.5 bits per

pixel for the dispia.2ed-frame difference with respect to simple frame

difference. However, the Pal-recursive algorithm has limited spatial

convergence to ensure stability and is more sensitive to noise.

The Pel-recursive algorithm is also accompanied by the problem of

addressing the moving and stationary areas and coding the movement-

compensated predi:tion error in moving areas. Upon successful movement

compensation, most of the quantized predJction errors will be zero, thus, use

of efficient run-length coding is justified. Also, since there are three

states (stationary area, insignificant compensated prediction errors, and

significant compensated prediction errors), an identification for the state

of the next run length must be provided in addition to the run lengths. Al
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alternative to this three-state encoding is to run-length code only

significant and insignificant prediction errors. The decision as to which

prediction to use (i.e., previous frame or displaced previous frame) can be

made by using previously transmitted information, so that no over head

information need be transmitted.

The Pel-recursive displacement estimation has been extended to the

transform domain in Ref. [25]. The algorithm works recursively in such a

way that the displacement estimates are updated from two-dimensional

unitary transform coefficients to two-dimensional unitary transform

coefficients. Each image is partitioned into blocks of size N=NrxNC9 to

obtain the N transform coefficients for each qth block subimage,

Cn(q) = uT i'.X C t ) Q1

= iX nq,XIq)T (11.12)

where

X IxlqX2q)T denote the coordinates of the upper left-hand Pel

of the qth block

UCXQ,ti = the column scanned vector of intensities of block q

Cn(q) = the nth transform coefficient

the nth linear transform basis vector.

Similarly,

Cn(q,D) = uT 1)q,t-TIon (11.13)

in
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is the nt' -Defficient in the previous displaced frame. When Cn(q) is

predicted by Cn(qD), the prediction error is

C(q,D) = Cn(q) - Cn(q,_D). (11.14)

The squared prediction errors are minimized by a steepest descent method.

The resulting recursive formula is

Dn+1(q) = D(q) - £ 7DnJ.

Jones and Rashid [20] have proposed residual-recursive displacement

estimation, which utilizes adaptive estimation techniques to vary certain

parameters of adaptive hybrid picture coding (AHPC) as the statistics uf the

image change. in AHPC, a one-dimensionally transformed S(k) in a raster scan

fashion is predicted by

P
S(k) = L ai(k)S(k-i) + e(k), 1I.15)

i-1

where the predictor coefficient ai(k) is a piece-wise constant. If ai(k) is

estimated, the residual sequence elements are given by

P
e(k) = S(k) - -1(k)S(k-i), (1I.lo)

i= !

where e(k) is the difference between the prediction of the transformed

picture element and the .ictual value. Assume that the image is divided into
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biocks of Nr rows by Nc columns. Then each residual .n the present frame

may be represented by

en(q) = U- uTCXCt)+n, (11.17)

where UT(Xq,t) n is a linear prediction.

Similarly, the displaced previous frame value for tis residual is

en(q,_) =UTq-D^,t- - UT -Dt- . (II.18)

A displaced residual difference may be formed by

DRDn(q,D) = en(q) - en(qD). (11.19)

The algorithm attempts to minimize the squared displaced residual difference

in a residual recursive steepest descent procedure as follows:

D (q) - -E 7(q)DRDn(qD)J2  (11.20)
R n+I (q) n~q 2 _n L

This operation may be simplified by

Dn+_(q) = Dn(q) - cDRD(q,Dq))en(Xq-D,T-T)]. (U.21)

They have shown that this algorithm is more stable in the region c

IU-4 than the coefficient recursive displacement estimation algorithm.

I,
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II. A SPATIO-TEPAIGPKALLY ADAPTIVE rMULTIMODE CODING UNDER PARALLEL

HYBflID OPTIC.L/DIITAL PROCESSING CONCEPT

II!i. Adaptive Multimode CodIing Using image Activity Measure

As discussed fn the previous chapt2r, the state-of-the-art interframe

coding algorithms have become very sophisticated at the cost of

implementation and systen complexity. However, the compressed bit rates

remain beyond the capabilities of conventional digital transmission channels,

such as telephone links. The common characteristic of most interframe

coding implementation is the need for a frame buffer for storing and

smoothing the image informaticn to be transmitted. Since the size of the

buffer is limited by constraints relating to cost and perceptual delay

effects, peaks of activity in the image signal can cause this buffer to

overflow. To avoid this, it is necessary to adapt the coder operation to the

amount of motion, that is, to deliberately degrade the inage quality in a

gradual and graceful manner as the image activity increases. Depending on

the desired transmission rate and image quality, it may be possible, under

the conditions of moderate motion, to utilize various psychovisual properties

described in the previous chapter, such as spatio-terporal response, so that

the adaptive strategies do not introduce visible degradations. Nevertheless,

for violent motion, visible degradation may be unavoidable. Therefore,

consideration should be given as to what extent visible degradations can be

tolerated by a human viewer for the application in mind.

The ideal adaptive strategies should depend on the actual

characteristics of the image signal which produce the nonuniform information

rate, such as percentage of frame motion, velocity of motion, amount of
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spat'al detail, etc. H1,wever, most mulimodie coders use a single decision

parameter, i.e., the b ufffer iemoryoccuaIC rate, which has also been used

uider hybrid optical/digital cor ressicn schemes (see Ref. 121). This has

lead to some degree of success jn real-tim- nultimode interframe codec

FITfulations for zoding National Television S,'stem Committee (NTSC)

monochrome video signals at 1.5 Mbits/sec under minicomputer control [26-28).

These can be called a class of multimode coders where M modes of coding

operations, such as were described in the preoious chapter, are selectively

applied to a vicoo signal to assure its continuous operation, to provide the

full available resolution in the lower mode, and to introduce the graceful

and progressive degraidation of image quality in the higher mode. The basic

design probl!m of a multimode coder is lack of a "genuine" adaptive

mecharism to switch between the higher and lower mode of operations.

instead of using a buffer memory occupancy criterion, ;e propose the use of

imeage activity measures. One measure of image activity that can be readily

ccmputed by an optical processor is image derivative energy for spatial and

temporal gradients, as proposed by McCaughey [3].
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!id.2. Parallel Hybrid Optical/Digital Processing Approach To Interframe

Coding

Tho use of optical processing for image data compression has been

orie-ited toward overcoming the excessive digital processing requirements of

digi~tl image bandwidth compression techniques. The advantages of optical

rocessirg of7 images are evident in light of current and emerging device

technologles such as focal plane CCD or CID detectors, spatial light

modulators (PROM, LCLV, high-speed silicon lithium niobate (SiLiNb)

devices, etc.), multi-mode optical fibers coupled with laser-based optical

comm:iunication technology, and VLSI technology enabling the potential

rcalization of parallel digital image processors. Within this new

technological environment, it is fruitful to reevaluate the advantages of

both optical and digital processing for various real-time applications, such

as image data compression for TV conferencing, military and/or medical

problems based on multiple image sequence, etc. The overall goal is system

architecture design, i.e., combining advanced optical and digital technologies

to improve the performance of compression systems.

The viable guideline for hybrid optical/digital system design would be

a full use of parallelism in image processing. The conventional and current

image transmission systems have been restricted by a sequential, or raster

scanning mode of operation. There is good reason for it in terms of simple,

real-time implementation. However, it may be useful to reconsider the

available modes of operation, from sequential line-by-line to parallel

block-by-block in spatial domain.

Returning to motion-compensated coding algorithms, which are the most

sophisticated that have been developed thus far, it has been noted that they

ia



~fcr fo ron. ,XC~SSV scv a7h computation and s Lability problems. However,

n d: th1e im6 ,e subblocks naed m-otion compensation. Also, the spatial and

e rl .:"jr aI _ cr a C tnt ir_"ort: atiofl nceded for the motion estimation can be easily

dd.itdcs a l.ow-erd operationi by the smir:z sensor &!rays of an optical

p r oc es scr. The i ma cze s at 41c, / tem po ral d e r iv a ri ve en e r gies wich are used as

a crite: fr ;eiectlrg an appropriate mode are also readily computed by an

opt-izal processer. I-ir.nlly, Llil hV1Oothc-.iCal multimode coder, consistin.g of

NZ subinace buffers and M, micrcoprocessors, can be viewed as a single-

~ns~ucton mitiic-dztastream., n~ultiple-l'uptruiction multiple-data stream

(sMDMDD)oc-rallel proccessor. Viewed in this way,, the adaptive decision

mechaism can b- considered a special-purpo.se computer (software and/or

hardware) interfaced with, both optical and digital processors, which takes

17forimation "rom the low-end optical subsystem- morf~toring image activities,

pr~ocesses thexn based on the preprogrammed decision rules, sends out the

instructions to the digital subsystem for multimode coding as to which image

subblock imare oul"fer needs a particular mode of processing by a particular

-microprocessor, and generates4i the overhead information to be transmitted to

the receiver.

T'he details of the proposed adaptive multimode predictive coding based

on p-rallel iriage processing concepts are discussed next.



I].... Svst e C _-;figur a Lon ,f A-aptive "lui timaee Coding

Thi oasic Ftructure that we propose for the hybrid optical/di.ital

X:-;,Jve uiti.:ode coder is given in Fig. 1. The image sequonce is captured

H' a 'sr.,art st nsor optical preprocessor that generates the spatial and

">'-:po-iigradients for ea:h subimage block. The spatial and temporal inage

er.azi ve nergies to each subblock can be computed by Either a digital or

an on-nicai preprocessor. Now the spatial and temporal image derivative

ne-gy values for each subblock are used for adaptive selection of the

codJ ',% modea applied to that subbiock or the temporal derivative and spatial

,r,elicdint values at each pel may be used to implement Pcl-recursive motion

compensation coding on a sequertial basis as well.

The adaptive decision mechanism thresholds the image activity measure

values for each block and generates the "instructions' as to what mode of

operation instruction (software program) is loaded into which microcrocessor

and which subimage memory content is fetched for execution. When the Pel-

bloc'. motion ccmpensation algorithm is applied to the particular subimage,

the overneac information about whether the subimage block is the stationary

-r moving part of the image must be sent bac% to the adaptive decision

n')anim. If the Pel-recursive algorithm is applied, the address

;;for.;ation of the moving pel should be generated on a sequential basis.

The adaptive decision mechanism can access the frame buffer for smoothing

to: data rate in order to double-check its performance. Therefore, when

~c~hned with the overhead information generator, it is a solely digital

s;b -ystem as is, for example, a conventional minicomputer.

The parallel image processor consists basically of N subblocks,

.,te/ftame buffers/memories and M microprocessors. Thus, it is also a
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digital subsystem. M mic-orprocessors for image processing can perform P

different modes of iwag,: manipulations. There are various operations that

can be used for these P modes, such as 8-bit PCM, spatial/temporal

sub artpiing, frame repeating/dropping, motion compensation coding, adaptive

quantization, linear and noalinear temporal filtering, etc. Given the image

processing modes, intensive simulation e;xperiments with subjective viewing

should be used to find the approrriate threshold values for the image

activity measures that can be used for mode sw.tching. In our subsequent

sinulazicn ey:periments, five modes of operation are used: (1) 8-bit PCM, (2)

spatial subsampling (subsampling every two pixels), (3) frame repeating, (4)

motion-compensation, and (5) temporal filtering.

Finally, the postprocessor or reconstruction processor at the receiving

end is naturally conceived as a digital subsystem that combines the

transmitted piecis of subimage blocks and treats the possible block

liscontinuity in the reconstructed image with the aid of the transmitted

overhead information for subsequent display.
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714 Algri-. of the Proposed Adeptive Mu'.tia.c.de Coder

1:~ . D!Zvide the image. fields L(X,t)I an~d 1Xt+)into sma'Ll

subblocks (say, 8118). Thus, *thpie are 1)24 8x8 subblocks for

a 25611256 image.

Step 2. C:pute the tcr'-oral differences of the curresp,.nding ith

sublblock between fieiljs U(X,t) and U(X,L+T), such as LT(.)

iLzx't+7') - Ui(X, t)j for i =,..N=1024.

S.e 3. Compute tae tcrmporal ir~age derivative enryfor the ith

ter~iporal subb1lock by using the followinag formula:

I d UT(T) 
2

FEi

:cr --he ith subi.mage.

2. Compute the spatial image derivative energy for the ith

szat .ai subblock by using the following formula:

I 2
SE~=for the ith subirnage where X =(XI,X2))

- Xli.IX2) 21ji ,x2) + 11; i1,X~

+~~~~~ [2x~2 i Uc 1 X



LSp 5. Adaptive decision-making based or. thresholdingff takes place for

each subblock, i~l..N(see Table 1). This rule may be

changed, depending' on the subjective Evaluation tests.

Step 6. Generate the overhead information for each subblock i

Jr, other words, informat-on about which subblock image i is

processed by a particular operation mode (1) frame repeat.

(2) spatial subsampl.ing, (3) motion compensation, (4) temporal

filtering,, (5) S-bit PCM , and the address of the moviLng and

stationary areas in the ith subbiock, etc.

Steo 7. Reconstruct the block-by-block transmitted mosaic image by

using the overhead information and, if necsssary, cosme tic-ally

treat the block discontinuity by spatial filtering or contrast

adjustmont.
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IV. PARALLEL IMAGE PROCESSING AKCHITECTURJE FOR MULTIMODE CODING: FURTHER

RE S EARCK AREAS

There are some remaining questions in the parallel image processing

app roach to muitimode coding. They are concerned with how to efficiently

interco-,nect the subimage buffers/memories with the multimicroprocessors.

The interconnection network problem for parallel and distributed processing

has been intensively researched by the computer architecture community

durinig the past several years. Siegel et al. 129,301 have proposed PASM: a

partitionable SIND/MIMID system for image processing and pattern recognition.

Figure 2 shows the block diagram overview of PASM. There is a striking

resemblance between Figs. I and 2, except for the existence of the overhead

information generator, frame buffer and transmission channel. In other

words, the parallel digitql image processor in Fig. I seems to encompass the

memory storage system, the memory management system, the parallel

computation unit, and the microcontrollers in Fig. 2. These units are

controlled by the system control unit, and correspond to the digital

decision processor in Fig. 1. Therefore, the same kind of considerations

toward PASM architecture design seem to apply to the multimode coder design

as well.

it seems that the conceptual framework of parallel digital image

processing is not restricted to image transmission, but can also apply more

generally to an intelligent computer vision application. However, optical

computation is an essential part of preprocessing used in the computation of

the spatio-temporal gradients and energies in the proposed interframe

compression scheme. It has also been raised to the sophisticated level of
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digital computation, providzd that parallel hybrid optical/digital systems

architecture is practicaily implementable.

In the near future, the performance of the proposed adaptive multimode

cod.in algorithm and its chan-nel error effects will be evaluated by

TImulation experiments done on a PDP 11/70 and on an I2S image processor.

Also, if time permits, conceptual architecture of a parallel digital image

processor for a multimode coder will be compared with PASK4 architecture.
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bZcadCaotinq standards, and the trasm3sicn0 rate mer second wit.*, 30 frames/sec fra. rate
-anc. 256 pixels x ..56 lines of sequence o! the, images is %bi. :zts/sec with reascnal-y
ifair ina;e cua:it'.

:t h~as been~ Observed that the vi ecocmerence im=aces involve mainly s=&2. nov emeanz so
t:!at the staticnary' pixels cf t.e prceeding fra:ne can. be repeazeiL to recensr-.,ct the next
frare a:t.~ rtceive=, and only t.%e =cving cixels are transmitt:rd. Zn ot..er words, the
..nonit.cnal :e .en2.s:..ment coc.~na can be ex-zectod.to perform better than Frame-to-Frame

~P~coding _'n terms of both -'.iSE and trehs-~~on 'rate.

The tr~ica. svstem cc-nvonents cf t.he conditional replenishment coding System are
m . ot~.cn Adeteczo: or aigmificant change detector, (2) pixel selector , based en t**e

-ad.dess infcrmation produced by (1) , (3) uniform7 cquanti.:er C64 levels), (4) addess
code=, C5) frame buffer, atd (6) reconstructe..

The essential par: of t.-e conditional re ernis.=ment coe: 4s t.e :motion detector or
*.sjcnjf!cant :nhange catector, w:hich can be, in general, divid e into two categories: d--rec:-
anC. indirect netnods. The direct mthod is based on laborioius calculation of the velocity

* (9-'3l1 or the est-4=ation o! motion -1isplacenenz of a =:oving pixel between neighboring
:rames, using a 3 dimensional i.-age or !iel(! model 111, (121.7hest methods are the bases
!or notion estimation/cormpensation codin; %.hose significantly 'improved performance has been

* e onstrated for spatially uniform translated displacement by Xetravali, etal (131 and
ct'ars. :.- order to ir*plerment ccnditional renlenishment interframe coding combined with

::;C: spatial comiression within the framework of t~he hybrid octical/digital syste=, an
cc: ntherof dtecting significant change betwzeen neighboringq fraces by thlreshold-

-g the fram-e diff!_erence isa prefered to te direct method in wahich- the *elocity and/cr
zotin dispolacement are calculated from- the pixel-to-pixel ote ration. Als~o, the state of
bu~fe: to smoo'n -toving pixel data generated by movemZent can be used as an indirect
noction of0e! mnfcn chtange. -'.% addition, MMSE of the frame difference can In-

* ate ioemn activity.

:Lhnthe frarmework of hybrid optical/digital arch iteezure j the motion detector can
e designed as a hybrid system, in which tvo li;quid crystal licght valves generate a frame
if!farence imace and t:ze focal pl-ane c-harge iinjection device 76-'D converts tae difference
-mage Jrntensity into a 1igitally addressable signal. 7hen.. the decision =Ling needed for

t*.he adamtive schere can .'-e made by using a mi4croorocessor acting on the digital signal
rcmth-= :

The adaptive strategies can be incormporate. immediately into condithocnal replenishmernt
ccdin;, whic!h is, indeed, a partially adaptive scheme itself, by accorm.odating several
0if ferent =oCes. They are as foloWs:

*(1) Adaptiv* change of the threshold level depending on th"e =ovemer.t activity
and the buffer stat:.

(2) Reduction o! spatial and/or temporal resolution by usiz; suibsam-pling or
filterin~g.

(3) Zus;ension of replenishment due to large movement.

(4) Field0 repeating due to very small: or no movement.

liver. te constraint of the optically imple=ented spatial compression system, the
P.)ove ad~aptive strategy (:) %as a imited titybecause :..a:, is not quits suitable for
:ang*nq --I, spatial resolutior of t.-e limited region (moving area) In the im=age. Also,

-4=a;e =Iarne-t-*;..-a;e plane operat:,or of :D:4 makes it inefficient to directly calculate
the Velocity Or m.otjon djSpl&Ccmn: Of Significantly moving pixels as 4n digital processing.
Therefoze.. we adopted an indirect change detection method using adaptive thresholding

the frame- difference based on the bu!fer state and the adaptive strategy (3) -the
:spensicn.- Of the repleni4shment, to form adaptive hybrid optical/dig~tal :DPCI/cenditional

keplem~shmnz n~rfrane co=7ression architecture as shown in -Figure 2.

Simulation exoeri=@ents a! results

To erznstrate t.he superior perform=ance of the adaptive hybrid optical/digital :DPC:/
conditional rep lanis.=ant interfr.;re compressicn architectuare, a series Cf eigital s~mlaeicn
0*76riments !iera carriedl out In the :_Jqital !mage Analysis artcyOf thle Univers~:., Of

Mhe source data for the simulation consisted ef a sequence of 14 iiiedframes
from a televi.sion b-roadcast of Walter Crcn.kite. The fra=es are i;tedat 256 x 2336
SX*els resolu:tcn. *,,:-... t its Of intens~ty -7er zixel.



292-10
Assuming that address coding is accurate, no chanel coding :,as been used, and no error
has :)een addeO to the transmi~sion channel, we have simulated thte follcwing !our systers
!--r czrpari scn of the conr'ressicn zerformances (bith/sec: with !rare rate of 30 frarmes/sc)

(A) A nonadlaptive ccndct:;ona. re7:enishmen: systemz vita the :st frazme transmi~tted
by 64 leve-. PC!.

(S) A nonaeaptive hyb~rid opti cal/Figital 2DPC:/coneditiona: replenishm=ent system
with the !at !Xare transmitteed tby lzra: (H.:c = ,LM - 32).

(C) An, ada-ptive conditional replenishment system with 64 .evel PC!.

()An. adaptive %ybrid eptical/eigital :ZPCI/ccnditional replentishment syste=
(11:Q - 2, 3-^) 3:.

* aedapti e strategies are based on frame replenishment suspension or !rame repeating
eending onthe !;,S= o! the successive frame difference. in other words, if .ZISE of the

frame diference is3 less than 0.05%. t.he fr-ae is rereated, and if ::"4S: is =ore than 0.5%,
-he fr;;_e rs-olensihr-.ent is -suspended and only a spatially compressed image by 64 level PC!
or:pt(:C ,E2 2) is transmi tted.

The motion -.etection strateTI consists of frar-e di!forencinq and Iterative threshold-
in7 as shcwn. in i4gure 3, Wzhose i nit i threshold is sot as the mean value of the* frarme
diff!eren ce and cne hundrett of the variance of the frame* difference is incremated till the
max,=,= nu=mhee of moving pixels are eletectee with"in t.he =axinuL- buffer si:. (3030 pzixels)
for uniform% uanti:ation.

Taile 2 sur-Aie. t::e transmiss.4on rate (bits/see), o average 'i t rate per frame
i'_its/frame) and the a';erage compression per f*rare ratio. of four syste;_s. Table 3 shows
*-!Z=. the nurber of =oving pixel. trans-4tted, contression ratio, and the number of bits
transzmitted !or the troptosod adaptive hybrid optical/digital 12"PC/eonedItional replenish-
=nz s~ste=.

;h.I shows '-o the \::S. performances of four systems change a-'On; 14 frames.

thte non. -adaptive sch-ere, ::,rai .:ased conditional replerishtment system needs about
a h-alf of transmission channel ca-zacity needed by PC:: based one. And yet, the su:bJective
and ozjective inage qualities of the reconstructed pictures by both systems are unbe:arably

!aVY b a ghost t*-,,e of noise or motion blur as shown In Picture 1.L and 1.. Also,
as i.n the case of iybrid cptical/digital ::PC:/?ran-s**to..Trae ZPCI cding j:'stsm, the
motion displactmenz. between neighboring frames seems to be accumulated. Me~ could be due
:o the fact that the buffer size is IL-nited so that sufficient number of moving pi.xels are
not correctly detected and transmitted to yield the reliable reconstruction at the
receiving end.

.;the adac:tive scheome, ir. the same way as above, :?C! base coneitional replenish-
.nsnt system needs about one third of transmissi.on charjnel capacity needed by PCV! based one.
:us to the adaptive stratogy4 Replenishment suspension taken place at the 7th frame till
the l0th fram-e and the 14th frame, the subjecti~ve azd ob4*ctiva imayo qualities of the re-
:onszructed pictures by both systems are excell.ent as the 14th frame reconstruction is2
shown in Picture 2.1, and 2.2. The worst reconstru-cted "'=ges are the Sth framnes shownPictuxe 2!.3., and :.4. crmaring the oriqinal Sth raeand _%th frame showr i.n Picture I.
anwd 2 . it. the reconstruactee ones, it is observed t.-at a so-called ghost effect slightly
:eq.raeed t.-e faciJal part but not theo h;ckground of thte reconstructed image.

it is noteviorzhn' that the !rare difference somstines contains noise i1n the stationary
area as ;::own in 2icture 4.'" This noise can b e filtered out in'order to reduze

:enumber of mtovingq pixels to ::e tuffered.
Conclusion~s and further research

;:.. have dsscritee an interfrane data czr=:sssion system which uses an adaptove
trategy of :se en;.s.hmsnt suspesns;ion and 2 bits/pixe. 1'%Pc: spatial cerpression schemer
,J-hn th frmwr of.bi p~a/±±a arch',itect.ure. '..e results of this temporal-
:'r adartive :,nterframe* comr.7ssicn sinulation are encouraging :because of t'-e overall- ;o
oI:*ctzve and ui ct: imaq* qua!Lty'(Z *~. .7) the average numter of b.,ts
or frame -. 64 zxts/frxne, t.-e averaqe :zM7:%ss~cn% ratio per ft:am. 14 , and thes trans-
ission :ate f:a:*e rate 3. framnes/sec. ).:: :bIts.

7There are scne zb*rlouS dilrections in wh:*ich future researc in th*Is scher-eshlde
cinted. ror example, the notion tzeontin scheme can toe odied by !f4l erin; the lOw
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contrast moving areas a.' the_.re--o-".a-e noise in te static areas of 'the picture, or
y an ada ti" ve reduction in the sensitivit' of the motion detector. The next step of rais-

In g t.e efficiency and adatability of the interfra e compression system seems to 'e the
, eeveop ent cf the more efficient and real-t -re .cton de-.ection processor within t'te frare
work. of hy-zid optical/digital architecture.

Also, it is :iorth examining the minimum 3i:0 Of the raZMe buffer in o:der that the
-,subec:ive irage quality of the image reconstructed by the nonadaptive conditional replen-

is:- ent coding is sufficiently ;ood. Uaually, the buffer si:. is constrained by the pro-
gressing digital me.ory techology and cost so that it may cease to be the = ajor i iting
factor to design t.e i ,tefr!an coder.

Finally, it is important to incorporate the effect of address coding and channel coding
une.-r the channel error.
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picture 1. 1 Picture 1..2 Picture 2.1
nonadaptive PCI based czditional nonadaptive :DPCI based adaptive PCI based candi-
replenis?.ment 14th frame candituonal replenishment tional replenishment 14th.*
recenstruetion 14th rave reconstruction frame reconstruction

Picture 2.2 Picture 2.3 Picture 2.4
adaptive :ZPC:4 based adaptive PCI based aeapteve :DPC~ based
conditiona. replenistzment conditional replenish.ment cend ional replenishment
14th frame reconstruction 6th frame reconstruction 6t.11am reconstruction

Picturze 3.2 Picture 3. Picture 4.1
-r44n ..14h frame original 6th frame frame difference

between 6th and 7th framtes
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Appendix III

Radiometric and Spatial Transformations

for Image Data Compression
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Radiometric and Spatial Transformations

for Image Data Compression

Research Objectives

Adaptive image data compression has been exclusively a digital

processor function because of the nonlinear and space-variant opera-

tions. However, a scanning optical system can achieve geometric

space-variant operations by alteration of the optical system's

instantaneous field of view (IFOV) and/or variation of the path of

the IFOV. Radiometric space-variance can be achieved by the usage

of a programmable mask, e.g., a PROM or liquid crystal. In the

research under this task we are exploring the extent to which radio-

metric and geometric space-variance can improve the performance of

a simple non-adaptive optical compression scheme, IDPCM, previously

developed under sponsorship of Grant AFOSR-76-3024.

Appendix Contents:

This appendix consists of a summary of research results on

employing radiometric and spatial transforms, plus a paper on the

theoretical basis for deriving spatial transformations.
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1) INTRODUCTION

* An optical means for intraframe compression, IDPCM, originally

- developed by Hunt1 , is modified by pre-compression and post-compression

processing. The pre-compression processing takes the form of a rad-

iometric and/or spatial transformation performed on the original image

* to produce an image with stationary mean and energy (radiometric) and/

or autocorrelation (spatial), respectively, as defined over sub-blocks

of the image. The post-compression processing is simply the inverse of

whatever transformation that was applied to the original image.

Such a modification to the basic compression step is possibly

* a way to lower bit rates for given image quality, or improve image

quality at a given bit rate.

The analysis that follows describes the effect of various rad-

iometric transformations on objective and subjective image quality,

for different compression bit rates. A spatial transformation is also

investigated.
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2) PROCEDUREI
The image used in this analysis is the 128 X 128 pixel, 256 grey

* level (8 bit/pixel) Walter picture shown in Fig. 1. The small size is

necessary to keep processing time to a minimum. A 256 X 256 8 bit/pixel

image is also processed for a few of the cases described below, to de-

termine if image size is important.

Radiometric

The general procedure is as follows; the original image is com-

pressed with the IDPCM architecture alone for various values of low

frequency quantization value L and high frequency quantization value

H, to define a set of images that are purely the result of the bit com-

pression. Then another set of images are derived for the same L,H val-

ues as in the first set, but with the further processing steps of

a) performing a radiometric transformation on the image before the com-

pression step and b) performing the inverse radiometric transforma-

tion on the compressed image from part a. The radiometric transform used

is that derived by Strickland, namely:

as

g(jk) = Cn [f(j,k) U'N] + Ps
n

(1)

t h t hwhere f(j,k) is the original value of the j k pixel,

gj,k) is the transformed value of the jth, kth pixel,

N is the original value of the mean determined over each

sub-block of the image tin all transformations described

below, the sub-blocks are 8 X 8 pixel squares; there are

256 of these sub-blocks in the 128 X 128 image used)
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PS is the new value of the sub-block mean (the same for

all sub-blocks)

aN is the original standard deviation determined over each

sub-block, and

is the new value of the sub-block standard deviationS

(the same for all sub-blocks).

The subscripts s and N refer to stationary and non-stationary,

respectively. By stationary, it is meant that the statistics (namely

mean and standard deviation) of each sub-block after the above trans-

formation will be the same as those of any other sub-block. The par-

ameters of this transformation, s and a, are these stationary values;

they are set by the user. (The parameter as is actually determined by

setting the desired stationary energy, R ; i.e.,

a2 = R 2 (2)2 2°s  : s  " s (2

- thus it is the energy and mean parameters that are discussed in

what follows.)

This transformation is applied to each sub-block individually;

a blocky image would result if no further modification was made.

Therefore the coefficients vN and jt (one set for each block) are

linearly interpolated between block centers to yield a smooth image.

An example of this radiometric transformation acting on Fig. 1 is

shown in Fig. 3b, with vs = 100 and Rs = 12000. The histograms of the

original and transformed images are shown in Figs. 6 and 8, respect-

ively.
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Table 1 lists the various reconstructed images. For given values

of L and H the energy, Rs, of the radiometric transformation is var-

ied to determine what effect the transformation n;.3 on the compression

process. The transform/compression/inverse transform process for Fig.

3a is illustrated by the sequence of figures outlined in Table 2. The

inverse transformation is simply accomplished by inverting eq. (1);

i.e., solve for f(j,k). Values of L from 2 to 16 are looked at to see

the sensitivity of the low frequency quantization to the transforma-

tion. Note that in almost all of the transformations, the stationary

mean value is 100. This value is chosen arbitrarily; the primary in-

terest here is to study the effect of a given mean, varying the energy

parameter.

The high frequency quantization value, H, was chosen arbitrar-

ily at first to match the low frequency quantization value, L, as shown

in Table 1. A subsequent analysis (see Figs. 19 and 20) is performed

to isolate the effect of the high frequency value H from the compres-

sion and low frequency quantization processes, and is discussed in the

results section.

Spatial

The discussion above refers to the radiometric transformation.

2
A spatial transformation, derived by Strickland , was applied to the

compression process in the same type of way as the radiometric trans-

form; i.e., spatially transform the original image/compress the result/

inverse transform the compressed image. The spatial transformation has

the pronerty of normalizing the autocorrelation width of each sub-

block over the entire image, where again the sub-block is an 8 X 8

pixel souare. The shape of the autocorrelation function for each block
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is approximated by an elliptically symmetric function. The width of

this function is estimated for each block in the vertical and horiz-

ontal directions; from this information each sub-block of the image

is in effect expanded to varying degrees in the horizontal and verti-

cal directions, depending on the original autocorrelation of the sub-

block in the two orthogonal directions. Thus sub-blocks with high cor-

relation (uniform grey areas) are left alone, and sub-blocks with low

correlation (edges) are expanded. Fig. 16 is an example of the spatial

transform used in this analysis. Fig. 17 uses the spatial transform

alone with the compression step, and Fig. 18 uses both the spatial and

a radiometric transformation with the compression step.

NMSE

A quantitative comparison of two images is the normalized mean

square error, or NMSE. It is defined as follows:

j (fr(j,k) - f(f,k))'
NMSE = j k Z f(j,k) 2  (3)

j,k

where fr (j,k) is the value of the i th, k th pixel of the reconstructed

image, and fIj,k) is that value for the original image. The NMSE

values are given in Table 1 for each reconstructed image, where

Fig. 1 was used as the original image.
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3) RESULTS; RADIOMETRIC

L =2, H = 2; Low frequency channel; 128 X 128 Walter image

The L = 2, H =2 case will be investigated first, with regard to

the radiometric transformation. Looking at the compressed image with

L = 2, H = 2 (Fig. 2) with no radiometric transform applied, the low

frequency quantization is readily apparent by the two level pixel val-

ues; bright pixels correspond to pixel values in the original image

that were above some threshold, dark pixels to those that were below

the threshold. Looking at Fig. 3a (radiometric transform with energy

= 12000 used), a similar quantization of pixel values is obvious, again

due to the threshold imposed. (The intermediate frames, Figs. 3b to

3g, used in the production of Fig. 3a will be referred to in the sub-

suquent analysis- see Table 2.) However, in the latter image, the IDPCM

induced bright and dark areas (quantization noise) are uniformly spread

over the image. This is the effect of the stationary transformation on

the original picture block means, and the two-level quantization. The

amount of this low frequency quantization noise can be seen, looking

at the progressioA of Figs. 4,3a,and 5, to be controllable by adjust-

ing the parameter of energy, R s, from 10,500 to 12,00O, to 20,000, res-

pectively. This parameter is ultimately affecting the histogram width

of the transformed image (before compression), and this width af-

fects the position of the uniform, equally-spaced pixel bins in the

uniform quantization step (low frequency channel). This may in fact

be the most important effect of the energy parameter for low quantiza-

tion values. For the case here, two quantization levels, a slight change

ii: .ie upoer or lower limits of the histogram to be quantized causes

.61 breakpoint pixel value to change. It so happens that in this image,
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the pixel values of the background wall are very close to this cutoff

value, and their quantized representation is thus sensitive to par-

ticular histogram upper and lower bounds, which, as stated above, are

related to the energy parameter of the transform. (The greater the

energy, the greater the spread in upper and lower bounds.) Note that

Fig. 4, with its different statistics, has a breakpoint value below
the wall pixel values, and the wall is uniformly bright. See Fig. 7

and Fig. 8 for examples of stationary image histograms tbefore com-

pression) of Figs. 4 and 3a, respectively (the original image histo-

gram is in Fig. 6).

Another effect of the radiometric transform is visible. Recall

that Fig. 3g is the reconstructed low frequencyframe before the inverse

transform. Applying the inverse transform to this image added to 3f produces

Fig. 3a, the final frame; note the grey levels introduced into Fig. 3a.

Dark areas are made brighter, and vice versa. (This is the inverse

stationary process acting on the block means.)

The effects of the radiometric transformation for the case L = 2,

H = 2 in the low frequency channel are now summarized:

1) Dark areas of the picture normally lost in the compression step

are brightened (and vice versa), thus the low frequency quant-

ization noise is redistributed more uniformly over the image.

2) The value of the quantization breakpoint depends upon upper

and lower bounds of the histogram, which is related to the mean

and energy parameters of the transformation; notice the dif-

ference between Figs. 4 and 3a.

3) The inverse transform re-introduces a range of grey levels that

are lost in the quantization process.
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L 2, H =2; High frequency channel

The above discussion refers to the low frequency channel; the

high frequency channel is now discussed, with respect to the single

frame, Fig. 3a.

Fig. 3f is the Laplace quantized Fig. 3e; these are intermedi-

ate frames that correspond to Fig. 3a. Fig. 3f is the image added to

Fig. 3g, the interpolated low frequency image, to give the image which

is then inverse transformed to produce Fig. 3a. Note that the quant-

ized image is a poor representation of the high frequency image: the

significant edges are present in the quantized image, but the added

quantization noise is uniform over the picture, degrading the informa-

tion content. Thus, in all the frames shown at H = 2 (L doesn't af-

fect high frequency quantization), the high frequency channel contri-

butes little information to the final picture. Note that in the L = 2.

H = 2 sequence (.and in other sequences), the high frequency noise is

visible in the background.

To determine the number of quantization levels needed to render

an accurate high frequency image, H was varied from 2 to 4 to 6 to 8,

in the compression of an untransformed picture that was very similar to

Fig. 3e. The significant results are in Figs. 19 (Hx4), and 20 (H=8).

The subjective fidelity of the quantized high frequency image becomes

acceptable at H = b (this image, not shown, is almost identical to

Fig. 20). The effect of low high frequency quantization levels should

be kept in mind in the discussion of the subsequent frames (when H is

less than 6).

Quantitative comparison

The normalized mean square error, or NMSE, is the quantitative
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comparison of the original image with the reconstructed image. The

NMSE of Fig. 2 and Fig. 4 are .131 and .069, respectively; an improve-

ment of 50 is apparent (see Table 1). As the energy parameter in-

creases above 10,500 (see Figs. 3a, 5), so does the NMSE. The reason

the NMSE is lower in the transformed images is evident by noting that,

in the untransformed image, much of the wall area of the picture has

been discarded due to the low frequency quantization step; however,

the transformed image has a more unifc.1mly represented wall (depending

on the particular pixel distribution that determines the quantization

breakpoint). Also, the inverse transform adds grey levels to the image

(corresponding to the grey levels in the original), which tends to

improve the NMSE.

L = 4, H = 4

Again increasing the energy from 10,500 (Fig. 9) to 12,000 (Fig.

10) shows the alteration of the image that is characteristic of the

shift in the breakpoint values. Now, however, four levels of quant-

ization, thus, three breakpoint values, are being used in the quant-

ization. The value of the center breakpoint is close to the single

breakpoint derived for the two level quantization, thus the wall pixel

pattern resembles that of Fig. 3a. Qualitatively, the quantized nature

of the untransformed image, Fig. 11, has been removed in Fig. 9. Quant-

itatively, there is a corresponding reduction in the NMSE of the two

images, from .024 to .016, respectively.

L = 8, H = 8

Here again, the quantized nature of the untransformed image, Fig.

12, is smoothed by the radiometric transform producing Fig. 13; however,



the NMSE shows virtually no change, form .004 to .003, respectively.

L = 16, H - 16

There is virtually no change in using the radiometric transfor-

mation for such a high low frequency quantization (L=16), as seen by

comparing Fig. 14 (untransformed) and Fig. 15 (transformed). The NMSE

is the same (.005) for both cases. The low value for H (=2) indicates

that all of the information present is from the low frequency chan-

nel; the high frequency channel noise can be seen superposed on the

image for both cases. It is interesting to see how much information

is present in the low frequency channel. Subsampling at a coarser rate

may be worthwile in reducing the bit rate for such high values of L.

256 X 256 Walter image

The 128 X 128 Walter image was used in the above sequences, to

reduce computing time. Two 256 X 256 images were studied with L = 2,

H = 16, to check for consistency, and gave results similar to those of

the 128 X 128 images described above.

Spatial transform

Preliminary results of the spatial transform shown in Fig. 16 for

the L = 4, H = 4 sequence are Figs. 17 and 18. Fig. 17 is the result of

the spatial transform alone; Fig. 18 is a combination of the spatial

and a radiometric transform. The results show little effect due to the

spatial transform used; a more radical spatial transform is probably

required.
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4) CONCLUSIONS

A. Radiometric transformations seem to work best (qualitatively)

to improve compressed frame quality for low frequency quantiza-

tions of 4 and 8 (i.e., L=4, L=8).

B. Breakpoint values in the uniform low frequency quantization step

are sensitive to image statistics (namely, lowest and highest

pixel values), and thus change with different radiometric trans-

formations. Such changes cause dramatic (image dependent) changes

in the final reconstruction; e.g., the wall pixels in the Walter

image.

C. Quantization noise introduced by the compression is more uni-

formly distributed over the image when the radiometric transform

is applied.

D. The inverse radiometric transform re-introduces a range of grey

levels that are lost in the quantization process.

E. The high frequency Laplace quantized image contributes little to

the final reconstructed picture for H less than 6.

F. The spatial transform (warp) tested did little to change the

qualitative value of the compressed image.
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5) FUTURE WORK

A. Improve low frequency quantization algorithm; uniform quant-

ization appears too crude. The radiometric transform may produce

a histogram whose low frequency quantization can be optimized

(e.g., Laplacian, Gaussian). If not, can the radiometric trans-

form be taylored to produce an optimum histogram shape?

B. Try subsanipling at a coarser rate in the low frequency channel

when the low frequency quantization number is large; say L greater

than or equal to 16.

C. Try more radical spatial transformations to provide a better test,

for this type of transform; also determine the effects of coars-

er sampling rates used in conjunction with spatial transforms.

D. Add spatially uniform random noise to the warped image before

the compression step, subtracting the exact same noise after the

compression; this will reduce contouring, at the price of a gran-

ular image. Applying the inverse warp may then reduce the effect

of the granularity in image areas effected most by the warp (i.e.,

areas of low correlation).

E. Combine spatial and radiometric transformations,
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TABLE 1 List of Figures

Figure LH Mean Energy Description NMSE

1- ---- ---- original --

2 2,2 ---- --- IDPCM alone .131

3a 2,2 100 12000 IDPCM,radiometric .090

4 2,2 100 10500 IDPCM,radiometric .069

5 2,2 100 20000 IDPCM,radlometric .119

6 --- --- - -- histogram of Fig. 1 --

7 ------ histogram of Fig. 4 --

8 --- --- histogram of Fig. 3a --

9 4,4 100 10500 IDPCM,radiometric .016

10 4,4 100 12000 IDPCM,radiometric .023

11 4,4 -- --- IDPCM alone .024

12 8,8 -- --- IDPCM alone .004

13 8,8 100 11000 IDPCM,radiometric .003

14 16,2 -- --- IDPCM alone .005

15 16,2 127 43000 IDPCM,radiometrlc .005

16 --- --- - -- spatial only --

17 4,4 --- -- IDPCM,spatial .039

18 4,4 100 10500 IDPCM,rad.,spatial .019

19 -,4 -- --- high freq. quant. --

20 -.8 -- --- high freq. quant. --
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TABLE 2 Intermediate Processing Steps of Figure 3a

Step Figure Description

1 1 original

2 3b radiometrically transformed Fig. 1

(mean = 100, energy = 12000)

3 3c subsampled Fig. 3b

4 3d uniformly quantized Fig. 3c

5 3e high frequency of Fig. 3b (derived from

subtracting the linearly interpolated Fig.

3c -not illustrated- from Fig. 3b)

6 3f Laplace quantization of Fig. 3e

7 3g linearly interpolated Fig. 3d

8 not illustrated the sum of Fig. 3f and Fig. 3g

9 3a the inverse transform of the above image;

the final image
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Figure 1 Original Image

Figure 2 IDPCM Alone



Figure 3a IDPCM, Radiometric
mean = 100

energy = 12000

Figure 3b-



Figure19

Figure 3
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Figure 3e

Figure 3f
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Figure 3g

Figure 4
IDPCM, Radiometric

mean a 100
energy a 10500
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Figure 5
IDPCM, Radiometric

mean - 100
energy - 20000

Figure 6
Histogram of Figure I
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Figure 7
Histogram of Figure 4

Figure 8
Histogram of Figure 3a
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Figure 9
IDPCM, Radiometric

mean - 100
energy - 10500

Figure 10
IDPCM, Radiometric

mean - 100
energy a 12000



125

Figure 11
IDPCM Alone

Figure 12
IDPCM Alone
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Figure 13
IDPCM, Radiometric

mean - 100
energy - 11000

Figure 14
IDPCM Alone
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Figure 15
IDPCMV, Radiometric.

mean - 127
energy - 43000

Figure 16
Spatial Only



128

,.,

Figure 17
IDPCM, Spatial

Figure 18
IDPCM, Radiometric, Spatial

mean - 100
energy - 10500
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Figure 19
Laplace Quantizer with H 4

Figure 20
* Laplace Quantizer with H -8
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ADA2T:VE DATA OMPRPESSION BY TMA:SFnRMVATICNS FOR GENERAT NG STATIONARY STATISTICAL IMAGE MODELS

Rocn N. StrcKland

c).izal Image Analysis Laboratory and Optical Sciences Zenter, University of Arizona, Tucson, USA

-. :NTRoOD' T ON for stationarity of the process f(x,y) in the
wide-sense are as follows:

The statistical behavior of images is of fun-
damental importance in many areas of image M- M-i
processing. :ncorporation of a priori statis- (j,k) - r - fj,k)
tical knowledge of the spatial correlation of .0 - 0 k=0
an image, for example, can lead to consider-
able improvement in many image restoration
algorithms. The recent trend in nonstation- = constant (3)
ar." restoration techniques (i),,2) has been and
paralleled by a similar shift in data compres-
sion schemes, from spatially nonadaptive M N-i M-i
differential pulse code modulation (DPCM) sys- R(J,k,r,s) I - , f(j,k)
tems to adaptive DPCM systems where the coef- M2 j-0 k;0
ficients of the optimum predictor are tuned to
the local statistical behavior of the image. f(j+r,k+s) a RN(r,s).(4)
The superiority of spatially adaptive schemes
i s now well supported (3). In other words, the mans of the neighborhoods

The foregoing evidence in support of using N are constant, and their autocorrelation
nonstationary statistical image models leads functions have constant lag parameters. N is
us to pose the following: suppose we turn the dimension of a square neighborhood. In
the problqm around--spatially transform or Eq. (4), an autocorrelation matrix with dimen-
warp an image so that it possesses stationary sions (2M-1,M) is sufficient due to redun-
statistics before feeding it to a nonadaptive dancy inherent in the real and even function.
process, such as nonadaptive DPCM or the non- This property further allows us to specify
adaptive Wiener filter--and then use the the autocorrelation by four unique profiles
reverse warp transformation to restore the shown in Figure I and designated as NS, ME,
original image geometry. We might then ox- Ew, and SE as points on the compass.
pet to see improved performance from those
image processes that assume stationarity. The spatial variance of the image statistics

is reflected by the spatial variance of the
:n a previous paper, Hunt (4) proposed the mean and autocorrelation. In the came of the
use of nonstationary statistical image models mean, we have a single number for each neigh-
in data compression. Schemes were outlined borhood. Somewhat more complex is the auto-
for the measurement of space-varying image correlation which, being a function of space,
parameters and implementation of image warp- is characterized by its energy, width, and
ing using hybrid diqital/optical hardware, shape. Hence, a total of four parameters may
The present paper represents a continued be used to describe neighborhood statistics.
effort toward developing transforms for gen- According to our specifications for station-
orating statistically stationary images. Our arity given in Ego. (3) and (4), any varis-
emphasis will be on the application of such tion between the parameters for all neighbor-
transforms for enhancing the performance of hoods will result in nonstationary behavior.
OPCN data compression, although we also in-
tend to investigate their gains in image .. THEORY OF TRANSFORMATIONS FOR
restoration applications. Throughout the STATIONARY STATISTICS
paper we use digital simulation to test the
transformations, although we anticipate that 3.1. Mean and Mean-Square Energy
.atnately they can be implemented optically. Consider the case of a square neighborhood N
2. CONDITIONS FOR STATIONARY STATISTICS of fft,k) consisting of Mz pixels. We assume

that ;q and RN(O,O) are initially nonstation-
We are concerned with generating images pos- ary with respect to other neighborhoods. In
sassing wide-sense stationarity, involving general, we anticipate that stationary sta-
only first- and second-order moments (5). tistics will be generated by a simple linear
For a two-dimensional image f(x,y), these are transformation in intensity of the form
the mean and autocorrelation statistics,
respectively g(j,k) - Af(j,k) + B. (5)

.%(x,Y) - f(x,y) dxdy (1) The conditions for stationarity in g(j,k) are
expressed as

*,(~,,)=: fx,yfx.,y.,'i .. N-I M-I;1,'
N~~ ~~ q & & (j'k )  = s(gal

dxdy. (2) M, j.0 k;O

Here the subscript N denotes that the moment 1 M:l M-.(_-L 4 . 9(:'k)z R i(0,O) (6b)
statistics are measured in local neighbor- M; 00 k*O
hoods. For the digital case, the conditions

iI 1 i. ... .... .. ."
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-here -s and {O0 are stationary values. R = C = constant exp[VW'n'"
$cllnq Eqs. (5I and (6) for constants A andS .,lds, (10)

Fs: "s(0')l Where RNS and REW are the profiles in orthog-
_ * (7a) onal North-South (vertical) and East-West

L %oOJ N (horizontal) directions respectlvely.

Stationary autocorrelation width along a par-
= stationary, standard deviation ticular direction is produced by normalizing

nonstationary standard deviation each nonstationary :, measured in tne same
direction, to some value rs. It is logicalS= "s " (7b) to equate :s with the minimum value of z,corresponding to the highest correlation.
The correlation widths are subsequently nor-

Equations (5) and (7) combine to give the malized by a resampling (interpolation) of the
transformation for stationary mean and mean- image data by a factor E, given by
square energy, or stationary mean and vari-
ance: oN

=(k) = - . (11)*,k =1 --- k~-)S
N EN is therefore the expansion factor (along a

given direction in the image) required to
Equation 8 represents a filtering algorithm transform the autocorrelation width ON of a
that is identical to an algorithm developed neighborhood N into a stationary value os. The
for the spatial contrast enhancement of two-parameter model given by Eqs. (10) gives
imaces (6). rise to expansion along orthogonal directions:

:n practice, Eq. i8) will generate images ENS and LEW. We derive methods for perform-

zontaining intensities that fall outside the ing local spatial expansions in section 5.

ava~iable dynamic range of the original image. 4. APPLYING TRANSFORMATIONS
in our case 6 bits, or gray levels 0 to 255. FOR STATIONARY STATISTICS
:;eoative data are obviously impractical for
optical implementation. Furthermore, we wish 4.1. Test Image
to restrict the upper gray level limit to 255
sc as not to contradict our ultimate aim of Figure 2 shows the 256- 256 pixel S-bit
data compression. We will therefore redefine 'Walter" image on which we base our results.
the transformation in Eq. (8) to accommodate The statistics are visibly nonstationary.
the dynamic range constraint; 0 1 g(j,k) 4 For example, examining contiguous blocks of
255. The new transformation is 16- 16 pixels, we find that the means range

from 13 to 203, and the mean-squares range
qg4,k) K kf(i,k) - LNJ - .s' (9a) from 172 to 43386. The global mean is 90,

with dynamic range from 9 to 249. For most
where of the results to follow we will consider

= sneighborhoods of 16- 16 pixels, giving a total.- if g(j,k) 1 255 (9b) of 256 contiguous blocks throughout the test
scene. The resolution of local statistical
behavior is not optimum at this block size

otherwmise 2 since, since ideally we would like to resolve
k minimum -s single edges in a block.

Nm - ax 4.2. Mean and Mean-Square Energy

" 1 We recall that the basic transformation to
f(;,k) - 9 produce stationary mean and mean-square en-Nmirl ergy is given by Eq. (8). Applying dynamic

r nrange constraints gave a practical transform,
where ,- a and ff(i,k)-NJmin are Eq. (9). Before applying this we need to say
the maximum positive-going and maxiirum something about the effects of noise. Let us
neqatLve-goLng variations (about the mean), assume for algebraic simplicity that any noise
respectively. By definition, Eq. (9) will present is additive, with zero mean. We can
generate images with stationary mean and write the noisy image as
approximately stationary mean-square energy.

3.2. Autocorrelatxon Shape f'(Jk) - f(J,k) - n(j,k), (12)

which, when substituted for f(j,k) in Eq. (8)
In section I we characterized the shape of gives
the autocOrrelation by four unique profiles.
Clearly, transformation to stationary behav- g(j,k) - f(j.k) * n(j,k) - u
ior requires that we assign some kind of model N N3
to each profile or. alternatively, a model (13)
for the autocorrelation as a whole. An imaqe
field is considered to be a good fit to a From Eq. (13) we can see that the noise term
first-order Markov process for which the cor- is amplified by the factor as/aN . Ideally,
relation between individual pixels is propor- we want the noise to remain in the background.
tional to their geometric separation (3). We In practice, we can partially attain this goal
choose to neglect the diagonal profiles in by rewriting Eq. 13) as follows:
F;ure I and define an elliptically symmetric
form of the autocorrelation, g(j,k) - K~f'(),k) - ] (14)

S a RN:,01 * constant ,exp[-:NS' where
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K :. : used :o ;enerate two values of expansion for
:-: eac. neighoorhhod, as follows:

= 1;6)
=~~ .. INS EWNS -EW

Z= nanz T is a :r.reshold related tc the ms (Note: the neighborhood subscript has been
noise :evel i,. Assuming tnat f!:,k) and omitted from Eq. '6) for the sake of clar-
n::,k, are un6orrelated random variables, ity.) Figures 4a and b are maps of ENS and
..en setting T - :n. would be equlvalent tc EEW derived from the transformed image in

sa"'ing: if the rms signal variations are Figure 3, in which each value of expansion is
less or equal to the estimated noise, do not represented by a block of 16 -16 pixels with
.ttemp: tc equali:e the mean-square energy, uniform gray level. The data are scaled to
or variance. instead, adjust only the mean. 8 bits, corresponding to the range of expan-
The sane threshold condition on K can also sion values.
ze applied to Eqs. (9) , iving:

5. MAGE WARPING BASED OK EXPANSION MAPS
= - N s We now address the problem of performing geo-

where metrical warping to accommodate each one of
c(=,s~k256 local expansions. A general approach is

--- 0 1 (,k) 1 255, to assume an m-order polynomial model for the
N spatial distortion, giving,

otnerwse m m-i
255 - - p 7 7 i (17a 1

(k)-_ Nmax

-(15) q l b; yj, (27b).!'D,k)-. Nimin ].  i-0 j-0

when :N " and where Ip,q) and (x,y) are coordinates of the
two spaces (warped and unwarped, or vice

K = 1 versa since the transformation can take place
in either direction).

when :N u T. A method for deriving the polynomials is pro-

Figure 3 shows the test image after trains- vided by superposing the expansion of each
formation using Eq. 115) with /As - 127 and neighborhood individually, with the constraint
:s 165, equivalent to a stationary mean- that the influence of each expansion on the
square of 43366 (as original image). We use relative geometry of other neighborhoods
:n fas 4ur noise esimate The final should be minimized. The technique we have

image would have exhibited discontinuities developed is based on control point grids.
at the borders between neighborhoods if we
had used single values of N and IN for each 5.2. Control Point Mapping
block of 16 - 16 pixels; instead, we use bi-
linear interpolation between neighborhoods Methods of using contl points in simlar
to provide unique values for every pixel. geometrical rectification and warping appli-
The result is a continuous image. Alterna- cations are well documented (7,81. in our
tively, we could have measured N and ,N in case, we define a regular grid of control
neighborhoods centered on all 256 256 pixels points whose coordinates coincide with the
in. the test image. obviously-at the expense corners of each square neighborhood, giving,
ofincrhease cmpateoio. In-Figuhe e3ense for the previous example, a total of 17. 17mean is consomtat 127 (measured in 16. 16- control points. Our problem is to determine

pixel blocks), and the mean-square energy how this regular grid in the original image
ranges from 16,000 to 26,000. We may con- space is redistribu~ed by the complex inter-
clude that the image is stationary in these actions of local expansions centered on each
statistics to a good approximation. The neighborhood. As mentioned above, we begin
devistons in the actual mean-squares about by determining how the grid is affected by
tne intended value of 43386 are due to the a single expansion applied to the first
noise thresholding and dynamic range con- neighborhood. We then apply a second expan-
straints. sion to the second neighborhood, and so on.

4.3. Expansion Maps for Stationary Each single expansion has two components ENS
Autocorrelaion Shape and EEW, acting in orthogonal directions,

shown in Figure 5. The region to be expanded

In section 3.2 we discussed the principles of is contained within a circle of radios d/.1.
equalizing autocorrelation shape in neighbor- Expansion causes vector displacements at a
hoods by performing localized direction- point (J) lying on the circumference of this
dependent expansions. After transformation circle a :ording to the followingt
to stationary mean and variance, the auto-
correlation functions of contiguous L6- 16- p a d cose.E 2, q sine*E
pixel neighborhoods are computed. Least- N21
squares fit values of :Ns and :EW are com- (181
puted, corresponding to the autocorrelation Outside the circle, for example at point (ii).
profiles in orthogonal directions (defined the transformations in x and y are
in Figure 1V. The minimum values of : for d
each direction from all neighborhoods are P - cos.(EE-l) I X (19a)

.7
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. sn- - '.b) point mapping between triangles as

p = a * a~x * any,
We see from e.s. lls) that the four neighbor- (21)
nood :on:rol points 1lvn. within the circle g - b, - bx bzy
are expanded by ENS in y and E.w in x. The
two-dimensional transformation does not pro- :n Eqs. (21) we create two sets of three lin-
serve te original geometry of the remaining ear equations in the same number of unknowns
neianborhoods. We can see intuitiveiv that by specifying that the vertices of a triangle
to dc so is impossible. In the following map into the vertices of the corresponding
section we describe a technique for reducing figure in warped space. Solution of these
:he mutual interference of local neighborhood equations leads to the mapping coefficients
expansions. a and b. Global warping based on two sets

of 17 x17 control points is therefore achieved
5.2. :teraive Control Point .aPPina by computing 32' 32 polynomial transforma-

tions that are applied individually to corre-
We have extended the preceding method of suc- sponding neighborhoods.
cessive expansions to incorporate correction
factzrs to offset the effects of nonlocalized Although up until now we have talked in terms
expansions. In Figure 6 we define the geo- of (p,q) being warped space and (x,y) being
metrical terminology for neighborhoods of unwarped space, in actual fact we derive the
aroitrary shape. The expansion components transformations after reversing the defini-
in this scheme are defined as tions. Hence, for each integral coordinate

in (x,y) in output warped space, the tranp-
S= W formations tell us where to look in unwarped

-N S - , EE = . (20) (p,q) space. If, as is the general case,
the coordinates (pq) are nonLntegral, then
we have to resort to gray level interpolation

The iterative algcrithm for control point to generate an output pixel. Bilinear inter-
mapping then proceeds as follows: polarion of the four nearest neighbors is

satisfactory. By defining the direction of
Notation: the transformation from warped to unwarped
Neighborhoods: N.,N: space, we make the task of pixel interpolation
Desired easier.

expansions: (rNs'EEw) I(ENsEEw)2,...
Measured Figure 9 shows the warped image derived by

expansions: (E'SE ) , (ENS,E ) 2 ..... three-point spatial trnasformation of the
intermediate image in Figure 3, based on the

(E sEV ) 25 6control point map in Figure 7. It is inter-

Algorith m: astin to note that noise-smoothing by low-
Stop 1 1pass filtering would now cause relativelymeasure %E ZS, )I for N- less blurring of visually important edges due

Measr fto the spatial expansion of such regions.
Step 2 NS .s This is obviously a simple example of the ad-
Apply corrected expansions

to/E-W  to N.' vantages of processing stationary images.
6. CONCLUSIONS

Step 511 We have discussed transformations for produc-Measure (E4s,EjV)26 for N. 5 6  ing images with wide-sense stationary first-Step 512 and second-order moment statistics. These
Apply exansions ENS:S5/1NS2ss, transforms are reasonably straightforward ti
EE /aEWn56 to N-S derive and to apply. We note that the in-

Return to Step 1, repeat for I iterations, verse spatial transformation is simple to
accomplish since it involves only switching

in the above we are applying correction fac- the roles of the two sets of control points
tors E 5;E to the desired expansions ENS, when implementing Eq. (21). Optical imple-
EEW. 7he effectiveness of the algorithm is mentation of forward and reverse spatial
measured by the convergence of the rms ex- transformations in intensity in Eq. (15) by
pansion errors measured at the end of each optical means is less obvious: it may be
iteration. In Figure 7 we have the warped necessary to resort to hybrid digital/optical
control point map for our previous two-com- technology. Further work will be directed
ponent expansion data after nine iterations. at testing the effectiveness of stationary
Figure 8 shows the converging rms error images in DPCM data compression, compared with
curves. There is apparently little to be nonstationary images.
gained by continuing beyond nine iterations.

5.3. Control Grid Interpolation
This work was performed under the sponsorship

At this point we have two sets of control of the U.S. Air Force Office of Scientific
points; the first, a regular grid in origi- Research under grant AFOSR-76-3024.
nal unwarped image space: the second, a
severely warped grid that will ultimately REFERENCES
establish the geometry of a stationary image.
The quadrilateral vertices (control points) I. Anderson, G. L., and Netravali, A. N., 1976.
map directly to the corresponding square "Image restoration based on a subjective
vertices. Interior points are mapped accord- criterion " I£E£ Trans. Sys. man Cybern.,
ing to interpolation based upon the mapping 6, 84S-853.
of the vertices. We use local mapping, 2. frussel. H. J., and Hunt, D. R., 1978,
based on small sets of neighboring control "Sectioned methods for image restoration,"
points. For example, we can express three- IEE Trans. Acoustics Speech Signal
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Figure 1 Autocorrelation function profile
designations.

(a) N-S data

(b) E-W data

Figure 4 Expansion ratios ap: elliptically-

Fioure 2 Original test image. symmetric autocorrelation model
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Figure 5 Principles of two-dimenugonal
control-point mapping.
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Figure 8 Convergence of iterative warping
(expansions of Figure S).
(Errors are rms of 256 values.)

'3" Y3

X control points

Figure 6 Quadrilateral neighborhood
geometry

Figure 9. Image wi th wide-sense stationary
mean and autocorrelation

Figure 7 Iterative warping: control point
grid after nine iterations (ex-
pansions of Figure 5)
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